Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T07:19:17.042Z Has data issue: false hasContentIssue false

On Deformations of Nodal Hypersurfaces

Published online by Cambridge University Press:  20 November 2018

Zhenjian Wang*
Affiliation:
Univ. Côte d’Azur, CNRS, LJAD, UMR 7351, 06100 Nice, France, e-mail : [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We extend the infinitesimal Torelli theorem for smooth hypersurfaces to nodal hypersurfaces.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2018

References

[1] Dimca, A., Topics on real and complex singularities. An introduction Advanced Lectures in Mathematics, Friedr Vieweg & Sohn, Braunschweig, 1987. http://dx.doi.org/10.1007/978-3-663-13903-4Google Scholar
[2] Dimca, A., Singularities and topology of hypersurfaces. Universitext, Springer-Verlag, New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4404-2Google Scholar
[3] Dimca, A., Hodge number of hypersurfaces. Abh. Math. Sem. Univ. Hamburg 66 (1996), 377386. http://dx.doi.org/10.1007/BF02940815Google Scholar
[4] Dimca, A., Syzygies offacobian ideals and defects of linear Systems. Bull. Math. Soc. Sei. Math. Roumanie (N.S.) 56(2013), no. 2, 191203.Google Scholar
[5] Dimca, A., On the syzygies and Hodge theory ofnodal hypersurfaces. Ann. Univ. Ferrara Sez. VII Sei. Mat. 63 (2017), no. 1, 87101. http://dx.doi.Org/10.1007/s11565-017-0278-yGoogle Scholar
[6] Dimca, A. and Saito, M., Generaüzation oftheorems ofGriffiths and Steenbrink to hypersurfaces with ordinary doublepoints. arxiv:1403.4563v4Google Scholar
[7] Dimca, A., Saito, M., and Wotzlaw, L., A generalization ofGriffiths’ theorem on rational integrals. II. Michigan Math. J. 58 (2009), 603625. http://dx.doi.org/10.1307/mmjV1260475692Google Scholar
[8] Durfee, A. H., Mixed Hodge struetures on punetured neighbourhoods. Duke Math. J. 50 (1983), no. 4, 10171040. http://dx.doi.org/10.1215/S0012-7094-83-05043-3Google Scholar
[9] Hamm, H. A., Lefschetz theorems for Singular varieties. Part I (Arcata, Calif., 1981) Proc. Sympos. Pure Math., 40, American Mathematical Society, Providence, RI, 1983, pp. 547-557.Google Scholar
[10] Mather, J., Notes on topological stability. Harvard University, 1970.Google Scholar
[11] Peters, C. and Steenbrink, J., Mixed Hodge struetures. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge, A Series of Modern Surveys in Mathematics, 52, Springer, Berlin, 2008.Google Scholar
[12] Voisin, C., Hodge theory and complex algebraic geometry. I. Cambriddge Studies in Advanced Mathematics, 77, Cambridge University Press, Cambridge, 2003. http://dx.doi.org/10.1017/CBO9780511615177Google Scholar
[13] Voisin, C., Hodge theory and complex algebraic geometry. II. Cambridge Studies in Advanced Mathematics, 77, Cambridge University Press, Cambridge, 2003. http://dx.doi.org/10.1017/CBO9780511615177Google Scholar
[14] Wang, Z., On homogeneous polynomials determined by their Jacobian ideal. Manuscripta Math. 146 (2015), 559574. http://dx.doi.org/10.1007/s00229-014-0703-9Google Scholar
[15] Zhao, Y., Deformations ofnodal surfaces. PhD thesis, Leiden University, 2016. https://openaccess.leidenuniv.nl/handle/1887/44549Google Scholar