Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T18:26:54.213Z Has data issue: false hasContentIssue false

On an Inequality of Peano(1)

Published online by Cambridge University Press:  20 November 2018

James S. Muldowney*
Affiliation:
University of Alberta, Edmonton Alberta
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f be a real valued function on an open subset of R2. It is assumed that f satisfies Carathéodory's conditions: f (t,x) is continuous in x for each t, Lebesgue measurable in t for each x and there is a locally integrable function m(t) such that |f(t, x)| ≤ m(t) uniformly in x. A proof will be given of the following theorem.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1973

Footnotes

(1)

This work was supported by Defence Research Board Grant DRB-9540-28.

References

1. Cafiero, F., Su un problema ai limiti relativo al’equazione y' = f(x, y, λ), Giorn. Mat. Battaglini 77 (1947), 145163.Google Scholar
2. Kamke, E., Differentialgleichungen reeler Funktionen, Akademische Verlagsgesellschaft, Leipzig, 1930; Chelsea, New York, 1947.Google Scholar
3. Lakshmikantham, V., On the boundedness of solutions of nonlinear differential equations, Proc. Amer. Math. Soc. 8 (1957), 10441048.Google Scholar
4. Natanson, I. P., Theory of functions of a real variable, Ungar, New York, 1961.Google Scholar
5. Olech, C. and Opial, Z., Sur une inégalité différentielle, Ann. Polon. Math. 7 (1960), 247264.Google Scholar
6. Peano, G., Sul'integrabilità délie equazione differenziali di primo ordine, Atti. Accad. Sci. Torino, Atti. R.|Accad. Torino 21 (1885/86), 677685.Google Scholar
7. Perron, O.,Ein neuer Existenzbeweis für die Intégrale der Differentialgleichung y' = f(x,y), Math. Ann. 76 (1915), 471484.Google Scholar
8. Reid, W. T., Ordinary differential equations, Wiley-Interscience, New York, 1971.Google Scholar