Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T12:30:56.689Z Has data issue: false hasContentIssue false

On a Theorem of Privaloff

Published online by Cambridge University Press:  20 November 2018

P. S. Bullen*
Affiliation:
University of British Columbia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is the object of this note to extend to general harmonic structures a theorem due to Privaloff [2] concerning the definition of harmonic functions. The notation is that of [8, 9, 10], where many of the definitions not given here will be found.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1967

References

1. Bauer, H., Axiomatische Behandlung des Durichletschen Problems fűr elliptische und parabolische Differentialgleichungen. Math. Annalen, 146 (1966), 1-59.Google Scholar
2. Bauer, H., Propriètès fines des fonctions hyperharmoniques dans une thèorie axiomatiques du potentiel. Annales. Inst. Fourier, 15 (1966), 136-154.Google Scholar
3. Boboc, H., Constantinescu, C. and Cornea, A., On the Dirichlet problem in the axiomatic theory of harmonic functions. Nagoya Math. J. 23 (1966), 73-96.Google Scholar
4. Boboc, H., Constantinescu, C. and Cornea, A., Axiomatic theory of harmonic functions. Non-negative superharmonic functions. Annales. Inst. Fourier, 151 (1966), 283-312.Google Scholar
5. Boboc, H., Constantinescu, C. and Cornea, A., Axiomatic theory of harmonic functions. Balayage. Annales Inst. Fourier, 152 (1966), 37-70.Google Scholar
6. Brelot, M., Elèments de la théorie classique du potential. (Paris, 1959).Google Scholar
7. Brelot, M., Lectures on potential theory. (Bombay, 1960).Google Scholar
8. Bullen, P. S., A general Perron integral. Can. J. Math., 17 (1966), 17-30.Google Scholar
9. Bullen, P. S., A general Perron integral II. (to appear in Can. J. Math.).Google Scholar
10. Bullen, P. S., A general Perron integral III. MRC Technical Summar. Report, 696 (1966).Google Scholar
11. Dynkin, E. B., Markov processes. (New York, 1965).Google Scholar
12. Privaloff, I. I., Sur la definition d'une fonction harmonique. Comptes Rendus de l'acad. Sci. U. R. S. S., 31 (1944), 102-103.Google Scholar
13. Zygmund, A., Trigonometrical Series. (Cambridge, 1959).Google Scholar