No CrossRef data available.
Article contents
On a Parametrized Levi Problem Involving One Complex Variable
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The classical Levi problem in several complex variables characterizes domains of holomorphy in terms of a boundary condition called pseudo convexity. The purpose of this note is to give a characterization of those domains D in ℂ×ℝ, where one can always solve the -problem with C∞ parameters, in terms of a certain kind of convexity condition on their boundaries.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1983
References
1.
Andreotti, A. and Grauert, H., Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France
90 (1962), 193-259.Google Scholar
2.
Gunning, R. C. and Rossi, H., Analytic Functions of Several Complex Variables, Prentice- Hall, Englewood Cliffs, NJ, 1965.Google Scholar
3.
Hormander, L., On the existence and regularity of solutions of linear pseudo-differential equations, Enseignement Math. 17 (1971), 99-163.Google Scholar
4.
Jurchescu, M., Variétés mixtes, (Seminar on Complex Analysis, Bucharest, 1976), LNM 743, Springer-Verlag, New York-Berlin-Heidelberg, 1979, 431-448.Google Scholar
5.
Jurchescu, M., mixtes, Espaces, Fifth Romanian-Finnish Seminar on Complex Analysis, Bucharest, 1981.Google Scholar
6.
Malgrange, B., Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier Grenoble. 6 (1955–56), 271-355.Google Scholar
7.
Rea, C., Le problème de Cauchy-Riemann pour les structures mixtes, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 695–7_27.Google Scholar
8.
Rea, C., Parametrized
operator on pseudoconvex sets, Ann. Mat. Pura Appl. (IV) 60 (1976), 161-175.Google Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20190726101247716-0472:S0008439500063748:S0008439500063748_inline2.gif?pub-status=live)
9.
Treves, F., Applications of distributions to PDE theory, Amer. Math. Monthly
77 (1970), 241-248.Google Scholar