Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T23:38:54.602Z Has data issue: false hasContentIssue false

On a Maximality Property of Partition Regular Systems of Equations

Published online by Cambridge University Press:  20 November 2018

Hanno Lefmann
Affiliation:
Fakultät für Mathematik SFB 343 Universität Bielefeld Postfach 8640 W-4800 Bielefeld 1 Germany
Hamza Si Kaddour
Affiliation:
Départment de Mathématiques Université Claude Bernard Lyon 1 - 43 Bd - du 11 Novembre 1918, 69622 Villeurbanne France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note we will study the following problem. For a given partition regular system of equations, which equations can be added to this system without introducing new variables, such that the new augmented system is again partition regular. It turns that the Hindman system on finite sums as well as the Deuber-Hindman system on finite sums of (m, p, c)-sets are maximal in this sense.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1993

References

[De 73] Deuber, W., Partitionen und lineare Gleichungssystème, Math. Z. 133(1973), 109123.Google Scholar
[De89] Deuber, W., Developments based on Rado 's dissertation “Studien zur Kombinatorik “, in: Proceedings 12th Brithish Combinatorial Conference, Norwich, 1989, 5274.Google Scholar
[DH 87] Deuber, W. and Hindman, N., Partitions and sums of﹛m, p, c)-sets, J. Combin. Th. (A) (1987), 300-302.Google Scholar
[GRS 80] Graham, R. L., Rothschild, B. L. and Spencer, J. H., Ramsey theory, John Wiley, New York, 1980.Google Scholar
[Hin 74] Hindman, N., Finite sums from sequences within cells of a partition of N, J. Combin. Th. (A) 17(1974), 111.Google Scholar
[Ra 33] Rado, R., Studien zur Kombinatorik, Math. Z. 36(1933), 424480.Google Scholar
[Sch 16] Schur, I., Überdie Kongruenz xm + ym ≡ zm (mod p), Jber. Dt. Math. - Verein, 1916, 114-117.Google Scholar
[vdW 27] van, B. L. der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15(1927), 212— 216.Google Scholar