Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T12:21:35.794Z Has data issue: false hasContentIssue false

Notes on Toppair, Top* and Regular Fibrations, Coglueing and Duality

Published online by Cambridge University Press:  20 November 2018

Rosalita Furey
Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NFLD, AIB 3XT, Canada
Philip Heath
Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NFLD, AIB 3XT, Canada
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © Canadian Mathematical Society 1981

References

1. Booth, P., Heath, P. and Piccinini, R., Section and base-point functors, Math. Z.. 144 (1975), 181-184.Google Scholar
2. Booth, P., Restricted hornotopy classes, Anais Acad. Brasil. Ciências, (49. 1 (1977), 1-8.Google Scholar
3. Booth, P. I., The section problem and the lifting problem, Math. Z. 121, (1971), 273-287.Google Scholar
4. Brown, R., Elements of Modern Topology, McGraw-Hill 1968.Google Scholar
5. Brown, R., Function spaces and product topologies, Quart. J. Math. Oxfor. (2) 15 (1964), 238-50.Google Scholar
6. Brown, R. and Heath, P. R., Coglueing hornotopy equivalences, Math. Z. 113 (1970), 313-325.Google Scholar
7. Dieck, t-Tom, Kamps, K. H. and Puppe, D., Homotopietheorie, Lecture notes in Mathematics 157, Springer Berlin 1970.Google Scholar
8. Dyer, E. and Eilenberg, S., An adjunction theorem for locally equiconnected spaces, Pac. Jour. Maths. (41. 3 (1972), 669-686.Google Scholar
9. Gottlieb, D. H., On fibre spaces and the evaluation map, Annals of Math.. 87 (1968), 42-55.Google Scholar
10. Heath, P. R., Induced hornotopy equivalence on mapping spaces and duality, Can. J. Math. XXII (1970), 697-700.Google Scholar
11. Heath, P. R., Hornotopy equivalence of a cofibre-fibre composite, Can. J. Math., XXIX, No. 6 (1977), 1152-1156.Google Scholar
12. Heath, P. R., An introduction to hornotopy theory via groupoids and universal constructions, Queen's papers in pure and applied mathematics. No.49 (1978).Google Scholar
13. Heath, P. R., Kamps, K. H., Induced hornotopy in structured categories, Rendiconti di mathematica (1) Vol. 9, Série VI, (1955), 71-84.Google Scholar
14. Hurewicz, W., On the concept of fibre space, Proc. Natr. Acad. Sci. U.S.A. 41 (1962), 956-961.Google Scholar
15. Kamps, K. H., Kan bedingungen und abstrakte homotopietheotie, Math. Z. 124 (1972), 215-236.Google Scholar
16. Lillig, J., A union theorem for Cofibrations, Arch. Math. Fasc. 4, Vol. XXIV (1973), 410-415.Google Scholar
17. Spanier, E., Algebraic Topology, McGraw-Hill, 1966.Google Scholar
18. Strøm, A., Note on Cofibrations, Math. Scand. 19 (1966), 11-14.Google Scholar
19. Strøm, A., Note on Cofibrations II, Math. Scand. 22 (1968), 130-112.Google Scholar
20. Strøm, A., The homotopy category is a homotopy category. Arch. Math. Vol. XXIII (1972), 435-441.Google Scholar
21. Tulley, P., On regularity in Hurewicz fibre spaces, Trans. Amer. Math. Soc. 116 (1965), 126-134.Google Scholar