No CrossRef data available.
Article contents
A Note on the Exactness of Operator Spaces
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper, we give two characterizations of the exactness of operator spaces.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2010
References
[1] Blecher, D., Tensor products of operator spaces. II. Canad. J. Math.
44(1992), 75–90.Google Scholar
[2] Blecher, D. and Paulsen, V., Tensor products of operator spaces. J. Funct. Anal.
99(1991), no. 2, 262–292. doi:10.1016/0022-1236(91)90042-4Google Scholar
[3] Effros, E. G. and Ruan, Z.-J., On non-selfadjoint operator algebras. Proc. Amer. Math. Soc.
110(1990), no. 4, 915–922. doi:10.2307/2047737Google Scholar
[4] Effros, E. G. and Ruan, Z.-J., Mapping spaces and liftings for operator spaces. Proc. London Math. Soc.
69(1994), no. 1, 171–197. doi:10.1112/plms/s3-69.1.171Google Scholar
[5] Effros, E. G. and Ruan, Z.-J., Operator Spaces. London Mathematical Society Monographs 23. The Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
[6] Effros, E. G., Junge, M., and Ruan, Z.-J., Integral mapping and the principle of local reflexivity for non-commutative L1 spaces. Ann. of Math.
151(2000), no. 1, 59–92. doi:10.2307/121112Google Scholar
[7] Effros, E. G., Ozawa, N. and Ruan, Z.-J., On injectivity and nuclearity for operator spaces. Duke Math. J.
110(2001), no. 3, 489–521. doi:10.1215/S0012-7094-01-11032-6Google Scholar
[8] Kadison, R. V. and Ringrose, J. R., Fundamentals of the Theory of Operator Algebras. I. Elementary Theory. Graduate Studies in Mathematics 15. American Mathematical Society, Providence, RI, 1997.Google Scholar
[9] Kirchberg, E., The Fubini theorem for exact C*-algebras. J. Operator Theory
10(1983), no. 1, 3–8.Google Scholar
[10] Paulsen, V., Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics 78. Cambridge University Press, Cambridge, 2002.Google Scholar
[11] Pisier, G., Exact operator spaces. Recent advances in operator algebras. Astérisque
232(1995), 159–186.Google Scholar
[12] Pisier, G., Introduction to Operator Space Theory. London Mathematical Society Lecture Notes Series 294. Cambridge University Press, Cambridge, 2003.Google Scholar
You have
Access