Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T00:10:06.346Z Has data issue: false hasContentIssue false

Note on the Borel Method of Measure Extension

Published online by Cambridge University Press:  20 November 2018

G. Fox*
Affiliation:
Université de Montréal
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This note concerns a countably additive measure on a Boolean ring of subsets of an abstract set, this measure being real-valued, admitting ∞ as a possible value. We are interested only in unique extensions, so we suppose the measure to be σ- finite. The following well known result will be referred to as the "extension theorem": "Every σ-finite measure on a ring extends uniquely to a σ-finite measure on the generated σ-ring. "Besides the familiar proof using outer measure, there is a Borel-type proof using transfinite induction [4]. We attempt here to reduce the Borel-type proof to its ultimate simplicity, reducing the problem to the bounded case.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1962

References

1. Albuquerque, J., Ensembles de Borel, Portugaha Math. (1944).Google Scholar
2. Borel, E., Leéons sur la théorie des fonctions. Collection de monographies sur la théorie des fonctions publiée s sous la direction de Emile Borel (4e éd Paris, Gauthier-Villars 19).Google Scholar
3. Halmos, P. R., Measure Theory (New York, 1950).Google Scholar
4. LeBlanc, L. et Fox, G.E., On the Extension of Measure by the Method of Borel. Can. Jour, of Math. vol. 8, pp. 516-523, 1956.Google Scholar
5. Lusin, N., Lecons sur les ensembles analytiques et leurs applications. Collection de monographies sur la théorie des fonctions publiées sous la direction de Emile Borel (Paris, 1930).Google Scholar
6. Neves, R., Sobre a construcae algebrica da teoria gérai da Melida. Instituto Para a alta cultura, Gendro de estudas matematicas, Publ.no. 13, 22 pp. (1945).Google Scholar