No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
In this paper, the quaternionic hyperbolic ideal triangle groups are parametrized by a real one-parameter family $\{{{\phi }_{s}}\,:\,s\,\in \,\mathbb{R}\}$ . The indexing parameter s is the tangent of the quaternionic angular invariant of a triple of points in $\partial \mathbf{H}_{\mathbb{H}}^{2}$ forming this ideal triangle. We show that if $s>\sqrt{125/3},$ then ${{\phi }_{S}}$ is not a discrete embedding, and if $s\,\le \,\sqrt{3\text{5}}$ , then ${{\phi }_{S}}$ is a discrete embedding.