Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T02:14:05.614Z Has data issue: false hasContentIssue false

A Note on p-adic Rankin–Selberg L-functions

Published online by Cambridge University Press:  20 November 2018

David Loeffler*
Affiliation:
Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK, e-mail : [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove an interpolation formula for the values of certain $p$-adic Rankin-Selberg $L$-functions associated with non-ordinary modular forms.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2018

References

[AI17] Andreatta, F. and Iovita, A. (with an appendix by Eric Urban), Triple product p-adic L-functions associated tofinite slope p-adic families of modularforms. arxiv:1708.02785Google Scholar
[BDR15a] Bertolini, M., Darmon, H., and Rotger, V., Beiünson-Flach elements and Euler Systems I: syntomic regulators and p-adic Rankin L-series. J. Algebraic Geom. 24(2015), no. 2, 355378. http://dx.doi.Org/10.1090/S1056-3911-2014-00670-6Google Scholar
[BDR15b] Bertolini, M., Beilinson-Flach elements and Euler Systems II: the Birch and Swinnerton-Dyer conjectureforHasse-Weil-Artin L-functions. J. Algebraic Geom. 24(2015), no. 3, 569604. http://dx.doi.Org/10.1090/S1056-3911-2015-00675-0Google Scholar
[BL16a] Büyükboduk, K. and Lei, A., Anticyclotomic p-ordinary Iwasawa theory of elliptic modular forms. arxiv:1 602.07508Google Scholar
[BL16b] Büyükboduk, K. and Lei, A., Anticyclotomic Iwasawa theory of elliptic modular forms at non-ordinary primes. arxiv:1 605.05310Google Scholar
[Casl5] Castella, F., p-adic heights of Heegner points and Beilinson-Flach classes. J. London Math. Soc. 96(2017), no.1, 156180. http://dx.doi.Org/10.1112/jlms.1 2058Google Scholar
[CE98] Coleman, R. F. and Edixhoven, B., On the semi-simplicity ofthe Up-operator on modular forms. Math. Ann. 310(1998), no. 1, 119127. http://dx.doi.Org/10.1007/s002080050140Google Scholar
[Dasl6] Dasgupta, S., Factorization ofp-adic Rankin L-series. Invent. Math. 205(2016), no. 1, 221268. http://dx.doi.Org/10.1OO7/sOO222-O15-0634-4Google Scholar
[Hid85] Hida, H., A p-adic measure attached to the zeta functions associated with two elüptic modular forms. I. Invent. Math. 79(1985), no. 1, 159195. http://dx.doi.Org/10.1007/BF01388661Google Scholar
[Hid88] Hida, H., A p-adic measure attached to the zeta functions associated with two elüptic modular forms. II. Ann. Inst. Fourier (Grenoble) 38(1988), no. 3, 183. http://dx.doi.Org/10.58O2/aif.1141Google Scholar
[JSW15] Jetchev, D., Skinner, C., and Wan, X., The Birch-Swinnerton-Dyer formula for elüptic curves of analytic rank one. arxiv:1512.06894Google Scholar
[KatO4] Kato, K., P-adic Hodge theory and values of zeta functions of modular forms. Cohomologies p-adiques et applications arithmetiques. III. Asterisque 295(2004), ix, 117290.Google Scholar
[KLZ17] Kings, G., Loeffler, D., and Zerbes, S. L., Rankin-Eisenstein classes and explicit reciprocity laws. Cambridge J. Math. 5(2017), no. 1, 1122. http://dx.doi.Org/10.4310/CJM.2017.v5.n1.a1Google Scholar
[LLZ14] Lei, A., Loeffler, D., and Zerbes, S. L., Euler Systems for Rankin-Selberg convolutions of modular forms. Ann. of Math. (2) 180(2014), no. 2, 653771. http://dx.doi.Org/10.4007/annals.2014.1 80.2.6Google Scholar
[LZ16] Loeffler, D. and Zerbes, S. L., Rankin-Eisenstein classes in Coleman families. Res. Math. Sei. 3(2016), no. 29, 53. http://dx.doi.Org/10.1186/s40687-016-0077-6Google Scholar
[My91] My, V. K., Rankin non-Archimedean convolutions of unbounded growth. Mat. Sb. (N.S.) 182(1991), no. 2,164-174; translation in Math. USSR-Sb. 72(1992), no. 1, 151161.Google Scholar
[OhtOO] Ohta, M., Ordinary p-adic etale cohomology groups attached to towers ofelliptic modular curves. II. Math. Ann. 318(2000), no. 3, 557583. http://dx.doi.Org/10.1007/s002080000119Google Scholar
[Pan82] Panchishkin, A., Leprolongement p-adique analytique des fonetions L de Rankin. I. C. R. Acad. Sei. Paris Ser. I Math. 295(1982), no. 2, 5153.Google Scholar
[PR88] Perrin-Riou, B., Fonetions L p-adiques associees ä une forme modulaire et ä un corps quadratique imaginaire. J. London Math. Soc. 38(1988), no. 1, 132. http://dx.doi.Org/10.1112/jlms/s2-38.1.1Google Scholar
[Urbl4] Urban, E., Nearly overconvergent modular forms. In: Iwasawa Theory 2012: State ofthe Art and Recent Advances, Springer Berlin, Heidelberg, 2014, pp. 401441. http://dx.doi.org/10.1007/978-3-642-55245-8J4Google Scholar
[Wanl5] Wan, X., Iwasawa main conjeeturefor supersingular elüptic curves. arxiv:1411.6352v2Google Scholar