No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let A be a complex Banach algebra without order. Following Kellogg [4] and Ching and Wong [2], a mapping T of A into itself is called a right (left) multiplier on A if T(ab)=(Ta)b(T(ab)=a(Tb)) for all a, b in A. T is said to be a multiplier on A if it is both a right and left multiplier on A. Let M(A)(RM(A), LM(A)) be the set of all (right, left) multipliers on A.