No CrossRef data available.
Article contents
A Note on [a, b]-Compact Spaces
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this note we present an array of results which deals with the question "When is the product of two [a, b]-compact spaces an [a, b]-compact space".
In section 1, we give some essential terminology. In section 2, we define some new classes of functions and then obtain some product theorems. In section 3, we give some applications of the product theorems obtained in section 2.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1979
References
1.
Bagley, R. W., Connell, F. H. and Mcknight, J. D. Jr., On properties characterizing pseudocompact spaces, Proc. Amer. Math. Soc,
9 (1958), 500-506.Google Scholar
2.
Banerjee, R. N., Closed maps and countably metacompact spaces, J. Lond. Math. Soc,
8 (1974), 49-50.Google Scholar
3.
Dieudonné, J., Une généralisation des espaces compacts, J. Math. Pures Appl.,
23 (1944), 65-76.Google Scholar
5.
Gál, I. S., On a generalized notion of compactness I, Proc. Koninki. Nederl. Akad. Wetensch.,
60 (1957), 421-435.Google Scholar
7.
Hanai, S., Inverse images of closed mappings I, Proc. Japan Acad.
37 (1961), 298-301
Google Scholar
9.
Hayashi, Y., On countably metacompact spaces, Bull. Univ. Osaka. Pref. Ser., A8 (1959/60), 161-164.Google Scholar
10.
Henriksen, M. and Isbell, J. R., Some properties of compactifications, Duke Math. J.,
25 (1958), 83-105.Google Scholar
11.
Krajewski, L. L., On expanding locally finite collection, Can. J. Math.,
23 (1971), 58-68.Google Scholar
12.
Mansfield, M. J., Some generalizations of full normality, Tran. Amer. Math. Soc,
86 (1957), 489-505.Google Scholar
13.
Michael, E., A note on paracompact spaces, Proc. Amer. Math. Soc,
8 (1957), 822-828.Google Scholar
14.
Morita, K., Paracompactness and product spaces, Fund. Math.,
50 (1961/62), 223-236.Google Scholar
16.
Nardzewski, C., A remark on the cartesian product of compact spaces, Bull. Acad. Polon. Sci.,
6 (1954), 265-266.Google Scholar
17.
Nóvak, J., On the cartesian product of two compact spaces, Fund. Math.,
40 (1953), 106-112.Google Scholar
18.
Saks, V. and Stephenson, R. M., Products of m-compact spaces, Proc. Amer. Math. Soc,
28 (1971), 279-288.Google Scholar
19.
Smith, J. C. and Krajewski, L. L., Expandability and collectionmse normality, Trans, Amer. Math. Soc,
160 (1971), 437-451.Google Scholar
20.
Scarborough, C. T., Closed graph and closed projections, Proc. Amer. Math. Soc,
20 (1969), 465-470.Google Scholar
You have
Access