Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T01:14:04.397Z Has data issue: false hasContentIssue false

Norm Inequalities for Generators of Analytic Semigroups and Cosine Operator Functions

Published online by Cambridge University Press:  20 November 2018

Jamil A. Siddiqi
Affiliation:
Département de mathématiques, statistique et actuariat, Université Laval, Québec, Canada G1K 7P4
Abdelkader Elkoutri
Affiliation:
Département de mathématiques, Faculté des sciences de Marrakech, Marrakech, Maroc
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that if A is the infinitesimal generator of a bounded analytic semigroup in a sector {z ∊ C : |arg z| ≦ (απ)/2} of bounded linear operators on a Banach space, then the following inequalities hold:

for any x ∊ D(An) and for any 0 < β < α. This result helps us to answer in affirmative a question raised by M. W. Certain and T. G. Kurtz [3]. Similar inequalities are proved for cosine operator funtions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Butzer, P. L. and Berens, H., Semigroups of operators and approximation, Springer- Verlag, New York Inc. 1967.Google Scholar
2. Cavaretta, A. and Schoenberg, I. J., Solution of Landau s problem conerning higher derivatives on the halfline, University of Wisconsin MRS Report No. 1050, March 1970.Google Scholar
3. Certain, M. W. and T. G. Kurtz, Landau-Kolmogorov inequalities for semigroups, Proc. Amer. Math. Soc. 63 (1977), 226230. Google Scholar
4. Chernoff, P. R., Optimal Landau-Kolmogorov inequalities for dissipative operators in Hilbert and Banach spaces, Adv. in Math. 34, (1979), 137144.Google Scholar
5. Ditzian, Z., Some remarks on inequalities of Landau and Kolmogorov, Aequationes Math. 12 (1975), 145151. Google Scholar
6. Kallman, R. R. and G. C. Rota, On the inequality ∥f'∥2 ≦ 4∥f∥ • ∥f“∥, Inequalities II, Academic Press, New York and London, 1970, 187-192.Google Scholar
7. Kolmogorov, A.N., On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Ucen. Zap. Moskov Gos. Univ. Mat. 30 (1939), 3-13; Amer. Math Soc. Transi. 1, No. 4 (1949), 119. Google Scholar
8. Kurepa, S., Remark on the Landau inequality, Aequationes Math. 4 (1970), 240241. Google Scholar
9. Sova, M., Cosine operator functions, Rozprawy Matematyczne 49 (1966), 1—46.Google Scholar
10. Stechkin, S. B., Inequalities between upper bounds of the derivatives of an arbitrary function on the half-line. (Russian) Mat. Zametki 1 (1967), 665674. Google Scholar
11. Stein, E. M., Functions of exponential type, Ann. of Math. 65 (1957), 582592. Google Scholar