Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T14:23:58.428Z Has data issue: false hasContentIssue false

Multiple Nontrivial Solutions for Doubly Resonant Periodic Problems

Published online by Cambridge University Press:  20 November 2018

Nikolaos S. Papageorgiou
Affiliation:
Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece e-mail: [email protected]
Vasile Staicu
Affiliation:
Department of Mathematics, Aveiro University, 3810-193 Aveiro, Portugal e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider semilinear periodic problems with the right-hand side nonlinearity satisfying a double resonance condition between two successive eigenvalues. Using a combination of variational and degree theoretic methods, we prove the existence of at least two nontrivial solutions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] Aizicovici, S., Papageorgiou, N. S., and Staicu, V., Periodic solutions for second order differential inclusions with the scalar p-Laplacian. J. Math. Anal. Appl. 322(2006), no. 2, 913929. doi:10.1016/j.jmaa.2005.09.077Google Scholar
[2] Amann, H., A note on degree theory for gradient mappings. Proc. Amer. Math. Soc. 85(1982), no. 4, 591595. doi:10.2307/2044072Google Scholar
[3] Bartolo, P., Benci, V., and Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with “strong” nonresonance at infinity. Nonlinear Anal. 7(1983), no. 9, 9811012. doi:10.1016/0362-546X(83)90115-3Google Scholar
[4] Fabry, C. and Fonda, A., Periodic solutions of nonlinear differential equations with double resonance. Ann. Mat. Pura Appl. 157(1990), 99116. doi:10.1007/BF01765314Google Scholar
[5] Fonda, A. and Mawhin, J., Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations. Proc. Royal Soc. Edinburgh Sect. A 112(1989), no. 1–2, 145153.Google Scholar
[6] Gasinśki, L. and Papageorgiou, N. S., Nonlinear Analysis. Series in Mathematical Analysis and Applications 9. Chapman & Hall/CRC, Boca Raton, FL, 2006.Google Scholar
[7] Habets, P. and Metze, G., Existence of periodic solutions of Duffing equations. J. Differential Equations 78(1989), no. 1, 132. doi:10.1016/0022-0396(89)90073-9Google Scholar
[8] Hofer, H., A note on the topological degree at a critical point of mountain pass-type. Proc. Amer. Math. Soc. 90(1984), no. 2, 309315. doi:10.2307/2045362Google Scholar
[9] Iannacci, R. and Nkashama, M. N., Unbounded perturbations of forced second order ordinary differential equations at resonance. J. Differential Equations 69(1987), no. 3, 289309. doi:10.1016/0022-0396(87)90121-5Google Scholar
[10] Kyritsi, S. and Papageorgiou, N. S., Solutions for doubly resonant nonlinear nonsmooth periodic problems. Proc. Edinburgh Math. Soc. 48(2005), no. 1, 199211. doi:10.1017/S0013091504000264Google Scholar
[11] Landesman, E. and Lazer, A., Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19(1969/1970), 609625,Google Scholar
[12] Mawhin, J. and Willem, M., Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences 74. Springer-Verlag, New York, 1989.Google Scholar
[13] Omari, P. and Zanolin, F., Nonresonance conditions on the potential for a second order periodic boundary value problem. Proc. Amer. Math. Soc. 117(1993), no. 1, 125135. doi:10.2307/2159707Google Scholar
[14] Zeidler, E., Nonlinear Functional Analysis and Its Applications. III. Springer-Verlag, New York, 1985.Google Scholar