No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
In this paper we consider a special class of linear operators defined on a cone K in a Banach space X. This class of operators is the natural generalization of a class of operators which has applications in the theory of interpolation spaces. In particular, using the criteria developed in Theorem 1, it is possible to characterize those sequence spaces X such that every linear operator A of weak types (p, p) and (q, q) is a continuous mapping of X into itself. For details of this we refer the reader to [3].
This work was supported in part by N. S. F. grant G. P. 6111.