Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T13:07:44.383Z Has data issue: false hasContentIssue false

The Moments of the Sum-Of-Digits Function in Number Fields

Published online by Cambridge University Press:  20 November 2018

Bernhard Gittenberger
Affiliation:
Department of Algebra and Discrete Mathematics Technische Universität Wien Wiedner Hauptstraße 8-10/118 A-1040 Wien Austria
Jörg M. Thuswaldner
Affiliation:
Department of Mathematics and Statistics Montanuniversität Leoben Franz-Josef-Straße 18 A-8700 Leoben Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the asymptotic behavior of the moments of the sum-of-digits function of canonical number systems in number fields. Using Delange’s method we obtain the main term and smaller order terms which contain periodic fluctuations.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1999

References

[1] Borevics, S. I. and Šafarevič, I. R., Zahlentheorie. Birkhäuser Verlag, Basel, 1966.Google Scholar
[2] Delange, H., Sur la fonction sommatoire de la fonction “somme des chiffres”. Enseign. Math. (2) 21 (1975), 3147.Google Scholar
[3] Gilbert, W. J., Fractal geometry derived from complex bases. Math. Intelligencer 4 (1982), 7886.Google Scholar
[4] Gilbert, W. J., Geometry of Radix Representation. The Geometric Vein. The Coxeter Festschrift (Eds. D. Chandler, B. Grünbaum, F. A. Sharks). Springer, Berlin, 1982.Google Scholar
[5] Gilbert, W. J., The fractal dimension of sets derived from complex bases. Canad. Math. Bull. 29 (1986), 495500.Google Scholar
[6] Gilbert, W. J., Complex bases and fractal similarity. Ann. Sci. Math. Québec 11 (1987), 6577.Google Scholar
[7] Grabner, P. J., Kirschenhofer, P., and Prodinger, H., The sum-of-digits-function for complex bases. J. London Math. Soc., to appear.Google Scholar
[8] Grabner, P. J., Kirschenhofer, P., Prodinger, H., and Tichy, R. F., On the moments of the sum-of-digits function. Applications of Fibonacci Numbers 5 (Eds. G. E. Bergum, A. N. Philippou and A. F. Horadam), 1993, 263–273.Google Scholar
[9] Kátai, I., Number systems and fractal geometry. Preprint, 1996.Google Scholar
[10] Kátai, I. and Kőrnyei, I., On number systems in algebraic number fields. Publ.Math. Debrecen (3–4) 41 (1992), 289294.Google Scholar
[11] Kátai, I. and Kovács, B., Kanonische Zahlensysteme in der Theorie der Quadratischen Zahlen. Acta Sci.Math. (Szeged) 42 (1980), 99107.Google Scholar
[12] Kátai, I. and Kovács, B., Canonical number systems in imaginary quadratic fields. Acta Math.Hungar. 37 (1981), 159164.Google Scholar
[13] Kátai, I. and Szabó, J., Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37 (1975), 255260.Google Scholar
[14] Kennedy, R. E. and Cooper, C. N., An extension of a theorem by Cheo and Yien concerning digital sums. Fibonacci Quart. 29 (1991), 145149.Google Scholar
[15] Kirschenhofer, P., On the variance of the sum of digits function. Number Theoretic Analysis, Lecture Notes in Math. 1452 (Eds. E. Hlawka and R. F. Tichy), 1990, 112–116.Google Scholar
[16] Kovács, B., Canonical number systems in algebraic number fields. Acta Math.Hungar. 37 (1981), 405407.Google Scholar
[17] Kovács, B. and Pethőo, A., Number systems in integral domains, especially in orders of algebraic number fields. Acta Sci. Math. (Szeged) 55 (1991), 286299.Google Scholar
[18] Kovács, B. and Pethőo, A., On a representation of algebraic integers. Studia Sci. Math.Hungar. 27 (1992), 169172.Google Scholar
[19] Thuswaldner, J. M., The sum of digits function in number fields. Bull. LondonMath. Soc. (1) 30 (1998), 3745.Google Scholar