Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T15:11:20.639Z Has data issue: false hasContentIssue false

Maximal subgroups of nontorsion Grigorchuk–Gupta–Sidki groups

Published online by Cambridge University Press:  02 November 2021

Dominik Francoeur
Affiliation:
Instituto de Ciencias Matemáticas, Calle Nicolás Cabrera, no. 13-15, Campus Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain e-mail: [email protected]
Anitha Thillaisundaram*
Affiliation:
Centre for Mathematical Sciences, Lund University, 223 62 Lund, Sweden

Abstract

A Grigorchuk–Gupta–Sidki (GGS)-group is a subgroup of the automorphism group of the p-regular rooted tree for an odd prime p, generated by one rooted automorphism and one directed automorphism. Pervova proved that all torsion GGS-groups do not have maximal subgroups of infinite index. Here, we extend the result to nontorsion GGS-groups, which include the weakly regular branch, but not branch, GGS-group.

Type
Article
Copyright
© Canadian Mathematical Society, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by a London Mathematical Society Research in Pairs (Scheme 4) grant.

References

Alexoudas, T., Klopsch, B., and Thillaisundaram, A., Maximal subgroups of multi-edge spinal groups. Groups Geom. Dyn. 10(2016), 619648.CrossRefGoogle Scholar
Bartsholdi, L., Grigorchuk, R. I., and Šunik, Z., Handbook of algebra. Vol. 3, North-Holland, Amsterdam, 2003.Google Scholar
Bondarenko, I. V., Finite generation of iterated wreath products. Arch. Math. (Basel) 95(2010), no. 4, 301308.CrossRefGoogle Scholar
Fernández-Alcober, G. A., Garrido, A., and Uria-Albizuri, J., On the congruence subgroup property for GGS-groups. Proc. Amer. Math. Soc. 145(2017), no. 8, 33113322.CrossRefGoogle Scholar
Fernández-Alcober, G. A. and Zugadi-Reizabal, A., GGS-groups: order of congruence quotients and Hausdorff dimension. Trans. Amer. Math. Soc. 366(2014), 19932017.10.1090/S0002-9947-2013-05908-9CrossRefGoogle Scholar
Francoeur, D., On maximal subgroups and other aspects of branch groups. Ph.D. thesis, University of Geneva, 2019.Google Scholar
Francoeur, D., On maximal subgroups of infinite index in branch and weakly branch groups. J. Algebra 560(2020), 818851.10.1016/j.jalgebra.2020.06.005CrossRefGoogle Scholar
Francoeur, D. and Garrido, A., Maximal subgroups of groups of intermediate growth. Adv. Math. 340(2018), 10671107.10.1016/j.aim.2018.10.026CrossRefGoogle Scholar
Garrido, A. and Uria-Albizuri, J., Pro- $\mathcal{C}$ congruence properties for groups of rooted tree automorphisms. Arch. Math. (Basel) 112(2019), no. 2, 123137.CrossRefGoogle Scholar
Grigorchuk, R. I., On Burnside’s problem on periodic groups. Funktsional. Anal. i Prilozhen 14(1980), no. 1, 5354.CrossRefGoogle Scholar
Grigorchuk, R. I., Just infinite branch groups . In: New horizons in pro-p groups, Birkhäuser, Boston, 2000.Google Scholar
Grigorchuk, R. I. and Wilson, J. S., A structural property concerning abstract commensurability of subgroups. J. Lond. Math. Soc. 68(2003), no. 2, 671682.CrossRefGoogle Scholar
Gupta, N. and Sidki, S., On the Burnside problem for periodic groups. Math. Z. 182(1983), no. 3, 385388.CrossRefGoogle Scholar
Pervova, E. L., Everywhere dense subgroups of a group of tree automorphisms. Tr. Mat. Inst. Steklova 231(2000), 356367 (Din. Sist., Avtom. i. Beskon. Gruppy).Google Scholar
Pervova, E. L., Maximal subgroups of some non-locally finite $p$ -groups. Internat. J. Algebra Comput. 15(2005), nos. 5–6, 11291150.CrossRefGoogle Scholar
Vovkivsky, T., Infinite torsion groups arising as generalizations of the second Grigorchuk group . In: Algebra (Moscow, 1998), de Gruyter, Berlin, 2000.Google Scholar
Zassenhaus, H., Lehrbuch der Gruppentheorie, Chelsea, New York, 1958.Google Scholar