Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T01:52:03.198Z Has data issue: false hasContentIssue false

Maurer–Cartan Elements in the Lie Models of Finite Simplicial Complexes

Published online by Cambridge University Press:  20 November 2018

Urtzi Buijs
Affiliation:
Departamento de Algebra, Geometría y Topología, Universidad de Málaga, Ap. 59, 29080-Málaga, España. e-mail: [email protected]@uma.es
Yves Félix
Affiliation:
Institut de Mathématiques et Physique, Université Catholique de Louvain-la-Neuve, Louvainla-Neuve, Belgique. e-mail: [email protected]
Aniceto Murillo
Affiliation:
Departamento de Algebra, Geometría y Topología, Universidad de Málaga, Ap. 59, 29080-Málaga, España. e-mail: [email protected]@uma.es
Daniel Tanré
Affiliation:
Département de Mathématiques, UMR 8524, Université de Lille 1, 59655 Villeneuve d'Ascq Cedex, France. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a previous work, we associated a complete differential graded Lie algebra to any finite simplicial complex in a functorial way. Similarly, we also have a realization functor fromthe category of complete differential graded Lie algebras to the category of simplicial sets. We have already interpreted the homology of a Lie algebra in terms of homotopy groups of its realization. In this paper, we begin a dictionary between models and simplicial complexes by establishing a correspondence between the Deligne groupoid of the model and the connected components of the finite simplicial complex.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] Buijs, U., Felix, Y., Murillo, A., and Tanre, D., Lie models of simplicial sets and representability of the Quillen functor. arxiv:1 508.01442Google Scholar
[2] Buijs, U., Felix, Y., Murillo, A., and Tanre, D., The Deligne groupoid of the Lawrence-Sullivan interval. Topology Appl. 204(2016), 17. http://dx.doi.Org/10.101 6/j.topol.201 6.02.004 Google Scholar
[3] Buijs, U., Felix, Y., Murillo, A., and Tanre, D., Rational Lie models for non-simply connected spaces and Bousfield-Kan completion. arxiv:1 601.05331Google Scholar
[4] Buijs, U. and Murillo, A., The Lawrence-Sullivan interval is the right model ofl+. Algebr. Geom. Topol. 13(2013), no. 1, 577588. http://dx.doi.Org/10.2140/agt.2013.13.577 Google Scholar
[5] Felix, Y., Halperin, S., and Thomas, J.-C., Rational homotopy theory. Graduate Texts in Mathematics, 205, Springer-Verlag, New York, 2001. http://dx.doi.Org/10.1007/978-1 -4613-0105-9 Google Scholar
[6] Felix, Y., Halperin, S., and Thomas, J.-C., Rational homotopy theory. II. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. http://dx.doi.Org/10.1142/9473 Google Scholar
[7] Gomez-Tato, A., Halperin, S., and Tanre, D., Rational homotopy theory for non-simply connected spaces. Trans. Amer. Math. Soc. 352(2000), no. 4,1493-1525. http://dx.doi.Org/10.1090/S0002-9947-99-02463-0 Google Scholar
[8] Lawrence, R. and Sullivan, D., A formula for topology/deformations and its significance. Fund. Math. 225(2014), no. 1, 229242. http://dx.doi.Org/10.4064/fm225-1-10 Google Scholar
[9] Parent, P.-E. and Tanre, D., Lawrence-Sullivan models for the interval. Topology Appl. 159(2012), no. 1, 371378. http://dx.doi.Org/10.101 6/j.topol.2011.1 0.006 Google Scholar
[10] Quillen, D., Rational homotopy theory. Ann. of Math. (2) 90(1969), 205295. http://dx.doi.Org/10.2307/1 970725 Google Scholar
[11] Sullivan, D., Infinitesimal computations in topology. Inst. Hautes Etudes Sci. Publ. Math. 47(1977), 269331. Google Scholar
[12] Tanre, D., Homotopie rationnelle: modeles de Chen, Quillen, Sullivan. Lecture Notes in Mathematics, 1025, Springer-Verlag, Berlin, 1983. http://dx.doi.Org/!0.1007/BFb0071482 Google Scholar