Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T05:06:12.476Z Has data issue: false hasContentIssue false

Lineability, continuity, and antiderivatives in the non-Archimedean setting

Published online by Cambridge University Press:  02 September 2020

J. Khodabandehlou
Affiliation:
Department of Mathematics, University of Zanjan, Zanjan, 45371-38791, Iran e-mail: [email protected][email protected]
S. Maghsoudi
Affiliation:
Department of Mathematics, University of Zanjan, Zanjan, 45371-38791, Iran e-mail: [email protected][email protected]
J. B. Seoane-Sepúlveda*
Affiliation:
Instituto de Matemática Interdisciplinar (IMI), Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3. Madrid28040, Spain

Abstract

This work focuses on the ongoing research of lineability (the search for large linear structures within certain non-linear sets) in non-Archimedean frameworks. Among several other results, we show that there exist large linear structures inside each of the following sets: (i) functions with a fixed closed subset of continuity, (ii) all continuous functions that are not Darboux continuous (or vice versa), (iii) all functions whose Dieudonné integral does not behave as an antiderivative, and (iv) functions with finite range and having antiderivative.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aron, R. M., Bernal González, L., Pellegrino, D. M., and Seoane Sepúlveda, J. B., Lineability: the search for linearity in mathematics . Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016.Google Scholar
Aron, R. M., Gurariy, V. I., and Seoane-Sepúlveda, J. B., Lineability and spaceability of sets of functions on $\mathbb{R}$ . Proc. Amer. Math. Soc. 133(2005), no. 3, 795803.CrossRefGoogle Scholar
Aron, R. M., Pérez-García, D., and Seoane-Sepúlveda, J. B., Algebrability of the set of non-convergent Fourier series . Studia Math. 175(2006), no. 1, 8390. http://dx.doi.org/10.4064/sm175-1-5.CrossRefGoogle Scholar
Balcar, B. and Franěk, F., Independent families in complete Boolean algebras . Trans. Amer. Math. Soc. 274(1982), no. 2, 607618.10.1090/S0002-9947-1982-0675069-3CrossRefGoogle Scholar
Bartoszewicz, A., Bienias, M., and Gła̧b, S., Independent Bernstein sets and algebraic constructions . J. Math. Anal. Appl. 393(2012), no. 1, 138143.10.1016/j.jmaa.2012.03.007CrossRefGoogle Scholar
Bartoszewicz, A., Filipczak, M., and Terepeta, M., Lineability of linearly sensitive functions . Results Math. 75(2020), no. 2, Paper No. 64. http://dx.doi.org/10.1007/s00025-020-01187-3 CrossRefGoogle Scholar
Bartoszewicz, A. and Gła̧b, S., Strong algebrability of sets of sequences and functions . Proc. Amer. Math. Soc. 141(2013), no. 3, 827835.CrossRefGoogle Scholar
Bernal-González, L., Cabana-Méndez, H. J., Muñoz-Fernández, G. A., and Seoane-Sepúlveda, J. B., On the dimension of subspaces of continuous functions attaining their maximum finitely many times . Trans. Amer. Math. Soc. 373(2020), no. 5, 30633083. http://dx.doi.org/10.1090/tran/8054 CrossRefGoogle Scholar
Bernal-González, L., Muñoz-Fernández, G. A., Rodríguez-Vidanes, D. L., and Seoane-Sepúlveda, J. B., Algebraic genericity within the class of sup-measurable functions . J. Math. Anal. Appl. 483(2020), no. 1, 123576. http://dx.doi.org/10.1090/tran/8054 CrossRefGoogle Scholar
Bernal-González, L., Pellegrino, D., and Seoane-Sepúlveda, J. B., Linear subsets of nonlinear sets in topological vector spaces . Bull. Amer. Math. Soc. (N.S.) 51(2014), no. 1, 71130. http://dx.doi.org/10.1090/S0273-0979-2013-01421-6 CrossRefGoogle Scholar
Ciesielski, K. C. and Seoane-Sepúlveda, J. B., A century of Sierpinski-Zygmund functions . Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2019), no. 4, 38633901. http://dx.doi.org/10.1007/s13398-019-00726-0 CrossRefGoogle Scholar
Ciesielski, K. C. and Seoane-Sepúlveda, J. B., Differentiability versus continuity: restriction and extension theorems and monstrous examples . Bull. Amer. Math. Soc. (N.S.) 56(2019), no. 2, 211260. http://dx.doi.org/10.1090/bull/1635 CrossRefGoogle Scholar
Enflo, P. H., Gurariy, V. I., and Seoane-Sepúlveda, J. B., Some results and open questions on spaceability in function spaces . Trans. Amer. Math. Soc. 366(2014), no. 2, 611625. https://doi.org/10.1090/S0002-9947-2013-05747-9 CrossRefGoogle Scholar
Fernández-Sánchez, J., Martínez-Gómez, M. E., Muñoz-Fernández, G. A., and Seoane-Sepúlveda, J. B., Algebraic genericity and special properties within sequence spaces and series. Preprint, 2019.Google Scholar
Fichtenholz, G. and Kantorovich, L., Sur les opérations dans l’espace des functions bornées . Studia Math. 5(1934), 6998.CrossRefGoogle Scholar
Fernández-Sánchez, J., Rodríguez-Vidanes, D. L., Seoane-Sepúlveda, J. B., and Trutschnig, W., Lineability and integrability in the sense of Riemann, Lebesgue, Denjoy, and Khintchine . J. Math. Anal. Appl. 492(2020), no. 1, 124433. http://dx.doi.org/10.1016/j.jmaa.2020.124433 CrossRefGoogle Scholar
Gámez-Merino, J. L. and Seoane-Sepúlveda, J. B., An undecidable case of lineability in ${\mathbb{R}}^{\mathbb{R}}$ . J. Math. Anal. Appl. 401(2013), no. 2, 959962. http://dx.doi.org/10.1016/j.jmaa.2012.10.067 CrossRefGoogle Scholar
García-Pacheco, F. J., Palmberg, N., and Seoane-Sepúlveda, J. B., Lineability and algebrability of pathological phenomena in analysis . J. Math. Anal. Appl. 326(2007), no. 2, 929939. http://dx.doi.org/10.1016/j.jmaa.2006.03.025 CrossRefGoogle Scholar
Gouvêa, F. Q., p-adic numbers, an introduction . 2nd ed., Universitext, Springer-Verlag, Berlin, 1997.CrossRefGoogle Scholar
Gurariĭ, V. I., Linear spaces composed of everywhere nondifferentiable functions . C. R. Acad. Bulgare Sci. 44(1991), no. 5, 1316 [in Russian].Google Scholar
Gurariĭ, V. I., Subspaces and bases in spaces of continuous functions . Dokl. Akad. Nauk SSSR 167(1966), 971973 [in Russian].Google Scholar
Hencl, S., Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Hölder functions . Proc. Amer. Math. Soc. 128(2000), no. 12, 35053511. http://dx.doi.org/10.1090/S0002-9939-00-05595-7 CrossRefGoogle Scholar
Jarník, V., O funci Bolzanoě [On Bolzano’s function] . Časopis Pěst. Mat. 51(1922), 248266 [in Czech].CrossRefGoogle Scholar
Katok, S., p-adic analysis compared with real. Student Mathematical Library, 37, American Mathematical Society, Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2007.Google Scholar
Khodabendehlou, J., Maghsoudi, S., and Seoane-Sepúlveda, J. B., p-adic sequences, series and lineability. Preprint, 2020.Google Scholar
Khodabendehlou, J., Maghsoudi, S., and Seoane-Sepúlveda, J. B., Lineability and algebrability within p-adic function spaces. Bull. Belg. Math. Soc. Simon Stevin, to appear.Google Scholar
Levine, B. and Milman, D., On linear sets in space C consisting of functions of bounded variation . Comm. Inst. Sci. Math. Méc. Univ. Kharkoff [Zapiski Inst. Mat. Mech.] (4) 16(1940), 102105 [in Russian, with English summary].Google Scholar
Mahler, K., p-adic numbers and their functions . 2nd ed., Cambridge Tracts in Mathematics, 76, Cambridge University Press, Cambridge-New York, 1981.Google Scholar
Puglisi, D. and Seoane-Sepúlveda, J. B., Bounded linear non-absolutely summing operators . J. Math. Anal. Appl. 338(2008), no. 1, 292298. http://dx.doi.org/10.1016/j.jmaa.2007.05.029 CrossRefGoogle Scholar
Rodríguez-Piazza, L., Every separable Banach space is isometric to a space of continuous nowhere differentiable functions . Proc. Amer. Math. Soc. 123(1995), no. 12, 36493654. http://dx.doi.org/10.2307/2161889 CrossRefGoogle Scholar
Schikhof, W. H., Non-Archimedean monotone functions . Report 7916, Catholic University of Nijmegen, The Netherlands, 1979.Google Scholar
Schikhof, W. H., Ultrametric calculus. An introduction to p-adic analysis . Cambridge Studies in Advanced Mathematics, 4, Cambridge University Press, Cambridge, UK, 1984.Google Scholar
Seoane-Sepúlveda, J. B., Chaos and lineability of pathological phenomena in analysis. Ph.D. thesis, Kent State University, Kent, OH, 2006.Google Scholar
Sierpinski, W., Sur une décomposition d’ensembles , Monatsh. Math. Phys. 35(1928), no. 1, 239242.CrossRefGoogle Scholar
van Rooij, A. C. M., Non-Archimedean functional analysis. Monographs and Textbooks in Pure and Applied Math., 51, Marcel Dekker, Inc., New York, 1978.Google Scholar
Weierstrass, K., Abhandlungen aus der Funktionenlehre . Julius Springer, Berlin, 1886.Google Scholar