No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
The limiting behavior of sequences of quasiconformal homeomorphisms of the n-sphere Sn is studied using a substitute to the Poincaré extension of Möbius transformations introduced by Tukia. Adapted versions of the limit set and the conical limit set known in the theory of Kleinian groups are utilized. Most of the results also hold for families of homeomorphisms of Sn with the convergence property introduced by Gehring and Martin.