Published online by Cambridge University Press: 20 November 2018
Each g ∊ ℤ[x] defines a homeomorphism of a compact space We investigate the isomorphism classes of the C*-crossed product algebra Bg associated with the dynamical system An isomorphism invariant Eg of the algebra Bg is shown to determine the algebra Bg up to * or * anti-isomorphism if degree g ≤ 1 and 1 is not a root of g or if degree g = 2 and g is irreducible. It is also observed that the entropy of the dynamical system is equal to the growth rate of the periodic points if g has no roots of unity as zeros. This slightly extends the previously known equality of these two quantities under the assumption that g has no zeros on the unit circle.