No CrossRef data available.
Published online by Cambridge University Press: 07 January 2019
Let $A$ be the inductive limit of a sequence
$$\begin{eqnarray}A_{1}\xrightarrow[{}]{\unicode[STIX]{x1D719}_{1,2}}A_{2}\xrightarrow[{}]{\unicode[STIX]{x1D719}_{2,3}}A_{3}\longrightarrow \cdots\end{eqnarray}$$
$A_{n}=\bigoplus _{i=1}^{n_{i}}A_{[n,i]}$, where all the
$A_{[n,i]}$ are Elliott–Thomsen algebras and
$\unicode[STIX]{x1D719}_{n,n+1}$ are homomorphisms. In this paper, we will prove that
$A$ can be written as another inductive limit
$$\begin{eqnarray}B_{1}\xrightarrow[{}]{\unicode[STIX]{x1D713}_{1,2}}B_{2}\xrightarrow[{}]{\unicode[STIX]{x1D713}_{2,3}}B_{3}\longrightarrow \cdots\end{eqnarray}$$
$B_{n}=\bigoplus _{i=1}^{n_{i}^{\prime }}B_{[n,i]^{\prime }}$, where all the
$B_{[n,i]^{\prime }}$ are Elliott–Thomsen algebras and with the extra condition that all the
$\unicode[STIX]{x1D713}_{n,n+1}$ are injective.