Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T17:05:43.736Z Has data issue: false hasContentIssue false

Inclusion Relations for General Riesz Typical Means

Published online by Cambridge University Press:  20 November 2018

A. Jakimovski
Affiliation:
Department of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
J. Tzimbalario
Affiliation:
Department of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let α be a non-negative real number, λ≡{λ,n}(n≥0) a strictly increasing unbounded sequence with λ0≥0 and let be an arbitrary series with partial sums s≡{sn}. Write

where s(t)=sn for λn<t≤λn+1, s(t)=0 for 0≤t≤λ0. The series ∑ an or the sequence of partial sums s={sn} is summable to ṡ by the Riesz method (R, λ, α) if

as ω→∞.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Borwein, D., On the abscissae of summability of a Dirichlet series, J. of the London Math. Soc. 30 (1955), 68-71.Google Scholar
2. Borwein, D., On a generalized Cesaro summability method of integral order, Tohoku Math. J. 18 (1966), 71-73.Google Scholar
3. Borwein, D. and Russell, D. C., On Riesz and generalized Cesaro summability of arbitrary positive order, Math. Zeit. 99 (1967), 171-177.Google Scholar
4. Burkill, H., On Riesz and Riemann summability, Prmc. Cambridge Phil. Soc. 57 (1961), 55-60.Google Scholar
5. Hardy, G. H. and Riesz, M., The general theory of Dirichlet's series, Cambridge Tract No. 18; 1915, 1952.Google Scholar
6. Jakimovski, A. and Izimbalario, J., Inclusion relations for Riesz typical means, Proc. Cambridge Phil. Soc. 72 (1972), 417-423.Google Scholar
7. Jurkat, W. B., Uber Konvegentzfaktoren bei Rieszschen Mitteln, Math. Zeit. 54 (1951), 262- 271.Google Scholar
8. Kuttner, B., Some theorems on the relation between Riesz and Abel typical means, Proc. Cambridge Phil. Soc. 57 (1961), 61-75.Google Scholar
9. Maddox, I. J., Some inclusion theorems, Proc. Glasgow Math. Assoc. 6 (1964), 161-168.Google Scholar
10. Maddox, I. J., Convergence and summability factors for Riesz means, Proc. London Math. Soc. 12 (1962), 345-366.Google Scholar
11. Meir, A., An inclusion theorem for generalized Cesaro and Riesz means, Canadian J. Math. 20 (1968), 735-738.Google Scholar
12. Peyerimhoff, A., Konvergenz und Summierbarkeitsfaktoren, Math. Zeit. 55 (1951), 23-54.Google Scholar
13. Rangachari, M. S., On some generalization of Riemann summability, Math. Zeit. 88 (1965), 166-188. Addendum, ibid. 91 (1966), 344-347.Google Scholar
14. Russell, D. C., Note on inclusion theorems for infinite matrices, J. London Math. Soc. 33 (1958), 50-62.Google Scholar
15. Russell, D. C., On Riesz and Riemann summability, Trans. Amer. Math. Soc. 104 (1962), 383-391.Google Scholar
16. Russell, D. C., Note on convergence factors, Tohoku Math. Jo urn. 18 (1966), 414-428.Google Scholar
17. Russell, D. C., On generalized Cesaro mean of integral order, Tohoku Math. Journ. 17 (1965), 410-442.Google Scholar
18. Russell, D. C., Corrigenda to 17, Tohoku Math. Journ. 18 (1966), 454-455.Google Scholar
19. Russell, D. C., Inclusion theorems for section-bounded matrix transformations, Math. Zeit 113 (1970), 255-265.Google Scholar
20. Russell, D. C., Summability methods which include the Riesz typical means I, Proc. Cambridge Phil. Soc. 69 (1971), 99-106.Google Scholar
21. Russell, D. C., Summability methods which include the Riesz typical means II, Proc. Cambridge Phil. Soc. 69 (1971), 297-300.Google Scholar
22. Russell, D. C., Note on convergence factors II, Indian J. of Math. 13 (1971), 29-44.Google Scholar
23. Chandrasekharan, K. and Minakshisundaram, S., Typical Means, Oxford University Press, Bombay, 1952.Google Scholar