No CrossRef data available.
Article contents
How Fields Can have a Product
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let k be a field. Two field extensions E, F of k are said to have a product- in the category of field extensions of k (see e.g. [1, p. 30]) if and only if there exist a field extension P of k and two k -isomorphisms P→ E, P→ F satisfying the following universal property. For any field extension K of k and any pair of k-isomorphisms K→E, K→F, there exists a unique k-isomorphism K→P such that the diagrams below commute.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1978
References
You have
Access