Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T05:20:50.845Z Has data issue: false hasContentIssue false

The Gradient of a Solution of the Poisson Equation in the Unit Ball and Related Operators

Published online by Cambridge University Press:  20 November 2018

David Kalaj
Affiliation:
Faculty of Mathematics, University of Montenegro, Dzordza Vašingtona bb, 81000 Podgorica, Montenegro. e-mail: [email protected] e-mail: [email protected]
Djordjije Vujadinovic
Affiliation:
Faculty of Mathematics, University of Montenegro, Dzordza Vašingtona bb, 81000 Podgorica, Montenegro. e-mail: [email protected] e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we determine the ${{L}^{1}}\to {{L}^{1}}$ and ${{L}^{\infty }}\to {{L}^{\infty }}$ norms of an integral operator $\mathcal{N}$ related to the gradient of the solution of Poisson equation in the unit ball with vanishing boundary data in sense of distributions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] Agmon, S., Douglis, A., and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12(1959), 623727. http://dx.doi.Org/10.1002/cpa.31 60120405 Google Scholar
[2] Ahlfors, L. V., Mb'bius transformations in several dimensions. University of Minnesota, School of Mathematics, 1981. Google Scholar
[3] Anderson, J. M., and A. Hinkkanen, The Cauchy transform on bounded domains. Proc. Amer. Math. Soc. 107(1989), no. 1, 179185. http://dx.doi.Org/10.1090/S0002-9939-1989-0972226-5 http://dx.doi.Org/10.2307/2048052 Google Scholar
[4] Anderson, J. M., D. Khavinson, and V. Lomonosov, Spectral properties of some integral operators arising in potential theory. Quart. J. Math. Oxford Ser. (2) 43(1992), no. 172, 387407. http://dx.doi.Org/10.1093/qmathj743.4.387 Google Scholar
[5] Dostanic, M., The properties of the Cauchy transform on a bounded domain, J. Operator Theory 36(1996), 233247 Google Scholar
[6] Dostanic, M., Norm estimate of the Cauchy transform on Lf(Cl). Integral Equations Operator Theory 52(2005), no. 4, 465475. http://dx.doi.Org/10.1007/s00020-002-1290-9 Google Scholar
[7] Dostanic, M., Estimate of the second term in the spectral asymptotic of Cauchy transform. J. Funct. Anal. 249(2007), no. 1, 5574. http://dx.doi.Org/10.101 6/j.jfa.2007.04.007 Google Scholar
[8] Dragomir, S. S., Agarwal, R. P., and Barnett, N. S., Inequalities for Beta and Gamma functions via some classical and new integral inequalities. (English) J. Inequal. Appl. 5(2000), no.2,103-165. http://dx.doi.Org/10.1155/S102 5583400000084 Google Scholar
[9] Gilbarg, D. and Trudinger, N., Elliptic partial differential equations of second order. Second edition. Grundlehren der Mathematischen Wissenschaften, 224. Springer-Verlag, Berlin, 1983. http://dx.doi.Org/10.1007/978-3-642-61798-0 Google Scholar
[10] Kalaj, D., On some integral operators related to the Poisson equation. Integral Equations Operator Theory 72(2012), 563575. http://dx.doi.Org/10.1007/s00020-012-1952-1 Google Scholar
[11] Kalaj, D., Cauchy transform and Poisson's equation. Adv. Math. 231(2012), no. 1, 213242. http://dx.doi.Org/10.1016/j.aim.2012.05.003 Google Scholar
[12] Kalaj, D. and Pavlovic, M., On quasiconformal self-mappings of the unit disk satisfying Poisson's equation. Trans. Amer. Math. Soc. 363(2011), 40434061. http://dx.doi.Org/!0.1090/S0002-9947-2011-05081-6 Google Scholar
[13] Kalaj, D. and Vujadinovic, Dj., The solution operator of the inhomogeneous Dirichlet problem in the unit ball. Proc. Amer. Math. Soc. 144(2016), 623635. http://dx.doi.Org/10.1090/procyi2 723 Google Scholar
[14] Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I., Integrals and series, Elementary Functions, 1. Gordon and Breach, New York, 1986.Google Scholar
[15] Thorin, G., Convexity theorems generalizing those of M. Riesz and Hadamard with some applications. Comm. Sem. Math. Univ. Lund 9(1948), 158.Google Scholar