Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T13:18:17.875Z Has data issue: false hasContentIssue false

Gorenstein Graded Algebras and the Evaluation Map

Published online by Cambridge University Press:  20 November 2018

Yves Félix
Affiliation:
Université Catholique de Louvain Louvain-La-Neuve Belgium
Aniceto Murillo
Affiliation:
Universidad de Málaga Málaga Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider graded connected Gorenstein algebras with respect to the evaluation map $\text{e}{{\text{v}}_{G\,}}\,=\,\text{Ex}{{\text{t}}_{G}}(k,\varepsilon )\,::\,\text{Ex}{{\text{t}}_{G}}(k,G)\,\to \,\text{Ex}{{\text{t}}_{G}}(k,k)$. We prove that if $e{{v}_{G}}\,\ne \,0$, then the global dimension of $G$ is finite.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1998

References

1. Adams, J. F. and Hilton, P. J., On the chain algebra of a loop space. Comment. Math. Helv. 30 (1956), 305330.Google Scholar
2. Baues, H. J. and Lemaire, J.-M., Minimal models in homotopy theory. Math. Ann. 225 (1977), 219242.Google Scholar
3. Félix, Y., Halperin, S., Lemaire, J.-M. and Thomas, J.-C., Mod p loop space homology. Invent. Math. 95 (1989), 247262.Google Scholar
4. Félix, Y., Halperin, S. and Thomas, J.-C., Elliptic Hopf algebra. J. London Math. Soc. 43 (1991), 545555.Google Scholar
5. Félix, Y., Halperin, S. and Thomas, J.-C., Gorenstein spaces. Adv. in Math. 71 (1988), 92112.Google Scholar
6. Félix, Y., Halperin, S. and Thomas, J.-C., Elliptic spaces. Bull. Amer. Math. Soc. 25 (1991), 6973.Google Scholar
7. Félix, Y., Halperin, S. and Thomas, J.-C., Elliptic spaces II. Enseign. Math. 39 (1993), 2532.Google Scholar
8. Félix, Y., Halperin, S. and Thomas, J.-C., Differential graded algebras in topology. In : Handbook of Algebraic Topology (Ed. I. James), Elsevier (1995), 829–865.Google Scholar
9. Félix, Y., Halperin, S. and Thomas, J.-C., L’application d’évaluation, les groupes de Gottlieb duaux et les cellules terminales. J. Pure Appl. Algebra 91 (1994), 143164.Google Scholar
10. Gammelin, H., Gorenstein space with a non zero evaluation map. Preprint, Lille, 1996.Google Scholar
11. Moore, J.C., Algèbre homologique et homologie des espaces classifiants. In: Séminaire Cartan 1959/1960, exposé 7.Google Scholar
12. Murillo, A., The evaluation map of some Gorenstein algebras. J. Pure Appl. Algebra 91 (1994), 209218.Google Scholar