Published online by Cambridge University Press: 20 November 2018
Let $f$ be a holomorphic function of the unit disc $\mathbb{D}$ , preserving the origin. According to Schwarz’s Lemma, $\left| {{f}^{\prime }}(0) \right|\,\le \,1$ , provided that $f(\mathbb{D})\,\subset \,\mathbb{D}$ . We prove that this bound still holds, assuming only that $f(\mathbb{D})$ does not contain any closed rectilinear segment $\left[ 0,\,{{e}^{i\phi }} \right],\,\phi \,\in \,\left[ 0,\,2\pi \right]$ , i.e., does not contain any entire radius of the closed unit disc. Furthermore, we apply this result to the hyperbolic density and give a covering theorem.