Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T18:08:10.229Z Has data issue: false hasContentIssue false

The Generating Degree of ℂp

Published online by Cambridge University Press:  20 November 2018

Victor Alexandru
Affiliation:
University of Bucharest Department of Mathematics Str. Academiei 14 RO-70109, Bucharest Romania
Nicolae Popescu
Affiliation:
Institute of Mathematics of the Romanian Academy P.O. Box 1-764 RO-70700, Bucharest Romania, email: [email protected]
Alexandru Zaharescu
Affiliation:
Department of Mathematics and Statistics McGill University 805 Sherbrooke StreetWest Montreal, Quebec H3A 2K6, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The generating degree $\text{g}\deg \left( A \right)$ of a topological commutative ring $A$ with char $A\,=\,0$ is the cardinality of the smallest subset $M$ of $A$ for which the subring $\mathbb{Z}\left[ M \right]$ is dense in $A$. For a prime number $p$, ${{\mathbb{C}}_{p}}$ denotes the topological completion of an algebraic closure of the field ${{\mathbb{Q}}_{p}}$ of $p$-adic numbers. We prove that $\text{g}\deg \left( {{\mathbb{C}}_{p}} \right)\,=\,1$, i.e., there exists $t$ in ${{\mathbb{C}}_{p}}$ such that $\mathbb{Z}\left[ t \right]$ is dense in ${{\mathbb{C}}_{p}}$. We also compute $\text{gdeg}\left( A\left( U \right) \right)$ where $A\left( U \right)$ is the ring of rigid analytic functions defined on a ball $U$ in ${{\mathbb{C}}_{p}}$. If $U$ is a closed ball then $\text{gdeg}\left( A\left( U \right) \right)\,=\,2$ while if $U$ is an open ball then $\text{gdeg}\left( A\left( U \right) \right)$ is infinite. We show more generally that $\text{gdeg}\left( A\left( U \right) \right)$ is finite for any affinoid$U$ in ${{\mathbb{P}}^{1}}\left( {{\mathbb{C}}_{p}} \right)$ and $\text{gdeg}\left( A\left( U \right) \right)$ is infinite for any wide open subset $U$ of ${{\mathbb{P}}^{1}}\left( {{\mathbb{C}}_{p}} \right)$.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2001

References

[A-P-Z] Alexandru, V., Popescu, N. and Zaharescu, A., On the closed subfields of Cp . J. Number Theory (2) 68 (1998), 131150.Google Scholar
[A] Ax, J., Zeros of Polynomials Over Local Fields. The Galois Action. J. Algebra 15 (1970), 417428.Google Scholar
[C-G] Coates, J. and Greenberg, R., Kummer Theory of Abelian Varieties. Invent.Math. (1–3) 126 (1996), 129174.Google Scholar
[Co] Coleman, R., Dilogarithms, regulators and p-adic L-functions. Invent.Math. (2) 69 (1982), 171208.Google Scholar
[Fo] Fontaine, J.-M., Sur certains types de représentations p-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate. Ann. of Math. 115 (1982), 529577.Google Scholar
[F-C] Fontaine, J.-M., Le corps des périodes p-adiques (avec une appendice par P. Colmez). Astérisque 223 (1994), 59111.Google Scholar
[F-P] Fresnel, J. and van der Put, M., Géometrie Analytique Rigide et Applications. Birkhäuser, 1981.Google Scholar
[I-Z1] Iovita, A. and Zaharescu, A., Completions of r.a.t-Valued fields of Rational Functions. J. Number Theory, (2) 50 (1995), 202205.Google Scholar
[I-Z2] Iovita, A. and Zaharescu, A., Galois theory of B+ dR. Compositio Math., to appear.Google Scholar
[I-Z3] Iovita, A. and Zaharescu, A., Generating elements for B+ dR. Preprint.Google Scholar
[L] Lang, S., Cyclotomic fields. Graduate Texts in Math. 59, Springer-Verlag, New York-Heidelberg, 1978.Google Scholar
[P-Z] Popescu, N. and Zaharescu, A., On the Structure of Irreducible Polynomials Over Local Fields. J. Number Theory (1) 52 (1995), 98118.Google Scholar
[S] Sen, S., On Automorphisms of local fields. Ann.Math. 90 (1969), 3346.Google Scholar
[Se] Serre, J. P., Corps Locaux. Hermann, Paris, 1962.Google Scholar
[T] Tate, J., p-Divisible Groups. Proceedings of a Conference on Local Fields at Driebergen, 1967, 158–183.Google Scholar