Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T05:24:58.620Z Has data issue: false hasContentIssue false

Function Theoretic Integral Operator Methods for Partial Differential Equations(1)

Published online by Cambridge University Press:  20 November 2018

Erwin Kreyszig*
Affiliation:
University of Windsor Windsor, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well known that complex analytic functions and harmonic functions of two real variables are closely related, so that from methods and results in complex function theory one can easily obtain theorems on those harmonic functions. This is the prototype of a relation between complex analysis and a partial differential equation (Laplace's equation in two variables). In the case of more general linear partial differential equations, one can establish similar relations.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1980

Footnotes

(2)

Supported by the N.S.E.R.C. of Canada under grant A9097.

(1)

This paper is one of a series of survey papers written at the invitation of the editors.

References

1. Azzam, A. and Kreyszig, E., Construction of kernels of integral operators for linear partial differential equations, in press.Google Scholar
2. Azzam, A. and Kreyszig, E., Regularity properties of solutions of elliptic equations near corners, in press.Google Scholar
3. Bauer, F., Garabedian, P., Korn, D., and Jameson, A., Supercritical Wing Sections II, Springer, Berlin, 1975.Google Scholar
4. Bauer, K. W., Dijferentialoperatoren bei partiellen Differentialgleichungen, Gesellsch. Math. u. Datenverarb. Bonn, Bericht 77 (1973) 7-17.Google Scholar
5. Bergman, S., Integral Operators in the Theory of Linear Partial Differential Equations, Springer, Berlin, 1969.Google Scholar
6. Bergman, S., On the mathematical theory of flow patterns of compressible fluids, in [18] (below), 1-9.Google Scholar
7. Bers, L., Function Theoretic Aspects of the Theory of Elliptic Partial Differential Equations, in R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. II, Interscience/Wiley, New York, 1962.Google Scholar
8. Bombieri, E., Variational problems and elliptic equations, Proc. Int. Congr. Math. Vancouver, 1974. (Vol. 1, pp. 53-63.)Google Scholar
9. Clements, D. L. and Rogers, C., On the Bergman operator method and anti-plane contact problems involving an inhomogeneous half-space, SIAM J. Appl. Math. 34, (1978), 764-773.Google Scholar
10. Colton, D. L., Partial differential Equations in the complex Domain, Pitman, London, 1976.Google Scholar
11. Eisenstat, S. C., On the rate of convergence of the Bergman-Vekua method for the numerical solution of elliptic boundary value problems, SIAM J. Numer. Anal. 11 (1974), 654-680.Google Scholar
12. Gilbert, R. P., Function Theoretic Methods in Partial Differential Equations, Academic Press, New York, 1969.Google Scholar
13. Gilbert, R. P., Constructive Methods for Elliptic Equations, Springer, Berlin, 1974.Google Scholar
14. Kneis, G., Darstellung negativ gekrümmter Flächen durch pseudoholomorphe Funktionen, in G. Anger (éd.), Elliptische Differentialgleichungen, vol. 1, Akademie-Verlag, Berlin, 1970.Google Scholar
15. Kracht, M. and Kreyszig, E., Bergman-Operatoren mit Polynomen als Erzeugenden, ManuscriptaMath. 1 (1969), 369-376.Google Scholar
16. Lanckau, E., Konstruktive Methoden zur Lösung von elliptischen Differentialgleichungen mittels Bergman-Operatoren, in G. Anger (éd.), Elliptische Differentialgleichungen, vol. 1, Akademie-Verlag, Berlin, 1970.Google Scholar
17. Lehman, R. S., Developments at an analytic corner of solutions of elliptic partial differential equations, J. Math. Mech. 8 (1959), 727-760.Google Scholar
18. Meister, V. E., Week, N., and Wendland, W. L. (eds.), Function Theoretic Methods for Partial Differential Equations, Proceedings of the International Symposium Held at Darmstadt, Germany, April 12-15, 1976, Springer, Berlin, 1976.Google Scholar
19. Miranda, C., Partial Differential Equations of Elliptic Type, 2nd éd., Springer, Berlin, 1970.Google Scholar
20. Nitsche, J. C. C., Vorlesungen über Minimalflächen, Springer, Berlin, 1975.Google Scholar
21. Payne, L. E., Some general remarks on improperly posed problems for partial differential equations, in R. J. Knops, Symposium on Non-Well-Posed Problems and Logarithmic Convexity Held in Heriot-Watt University, Edinburgh/Scotland March 22-24, 1972, Springer, Berlin, 1973.Google Scholar
22. Ruscheweyh, S., Geometrische Eigenschaften der Lösungen der Differentialgleichung J. Reine Angew. Math. 270 (1974), 143-157.Google Scholar
23. Vekua, I. N., New Methods for Solving Elliptic Equations, Wiley, New York, 1967.Google Scholar