Published online by Cambridge University Press: 20 November 2018
Let X and Y be topological spaces. If Y is a uniform space then one of the most useful function space topologies for the class of continuous functions on X to Y (denoted by C) is the topology of uniform convergence. The reason for this usefulness is the fact that in this topology C is closed in YX (see Theorem 9, page 227 in [2]) and consequently, if Y is complete then C is complete. In this paper I shall show that a similar result is true for the function space of connectivity functions in the topology of uniform convergence and for the function space of semi-connectivity functions in the graph topology when X×Y is completely normal. In a subsequent paper the problem of connected functions will be discussed.