Published online by Cambridge University Press: 20 November 2018
Let $G$ be a finite group, and let $k$ be a field whose characteristic $p$ divides the order of $G$. Freyd's generating hypothesis for the stable module category of $G$ is the statement that a map between finite-dimensional $kG$-modules in the thick subcategory generated by $k$ factors through a projective if the induced map on Tate cohomology is trivial. We show that if $G$ has periodic cohomology, then the generating hypothesis holds if and only if the Sylow $p$-subgroup of $G$ is ${{C}_{2}}$ or ${{C}_{3}}$. We also give some other conditions that are equivalent to the $\text{GH}$ for groups with periodic cohomology.