Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T19:30:09.768Z Has data issue: false hasContentIssue false

Free Groups Generated by Two Heisenberg Translations

Published online by Cambridge University Press:  20 November 2018

BaoHua Xie
Affiliation:
College of Mathematics and Econometrics, Hunan University, Changsha, 410082, China e-mail: [email protected]@[email protected]
JieYan Wang
Affiliation:
College of Mathematics and Econometrics, Hunan University, Changsha, 410082, China e-mail: [email protected]@[email protected]
YuePing Jiang
Affiliation:
College of Mathematics and Econometrics, Hunan University, Changsha, 410082, China e-mail: [email protected]@[email protected]
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we will discuss the groups generated by two Heisenberg translations of $\text{PU}\left( 2,1 \right)$ and determine when they are free.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2013

References

[1] Brenner, J. L., Quelques groupes libres de matrices. C. R. Acad. Sci. Pari. 241 (1955), 16891691.Google Scholar
[2] Chang, B., Jenning, S. A., and Ree, R., On certain pairs of matrices which generate free groups. Canad. J. Math. 10 (1958), 279284. http://dx.doi.org/10.4153/CJM-1958-029-2 Google Scholar
[3] Goldman, W. M., Complex hyperbolic geometry. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999.Google Scholar
[4] Goldman, W. M. and Parker, J. R., Complex hyperbolic ideal triangle groups. J. Reine Angew. Math. 425 (1992), 7186.Google Scholar
[5] Lyndon, R. C. and Ullman, J. L., Groups generated by two parabolic linear fractional transformations. Canad. J. Math. 21 (1969), 13881403. http://dx.doi.org/10.4153/CJM-1969-153-1 Google Scholar
[6] Massey, W. S., Algebraic topology: an introduction. Graduate Texts in Mathematics, 56, Springer-Verlag, New York-Heidelberg, 1977.Google Scholar
[7] Roger, R. C. and Schupp, P. E., Combinatorial group theory. Classics in Mathematics, Springer-Verlag, Berlin, 2001.Google Scholar
[8] Sanov, L. N., A property of a representation of a free group. (Russian) Doklady Akad. Nauk SSS. 57 (1947), 657659.Google Scholar
[9] Schwartz, R. E., Ideal triangle groups, dented tori, and numerical analysis. Ann. of Math. 153 (2001), no. 3, 533598. http://dx.doi.org/10.2307/2661362 Google Scholar
[10] Xie, B. and Jiang, Y.,Groups generated by two elliptic elements in PU(2; 1). Linear Algebra Appl. 433 (2010), no. 1112, 21682177. http://dx.doi.org/10.1016/j.laa.2010.07.028 Google Scholar