Article contents
Faltings' Finiteness Dimension of Local Cohomology Modules Over Local Cohen–Macaulay Rings
Published online by Cambridge University Press: 20 November 2018
Abstract
Let $(R,\mathfrak{m})$ denote a local Cohen–Macaulay ring and
$I$ a non-nilpotent ideal of
$R$. The purpose of this article is to investigate Faltings’ finiteness dimension
${{f}_{I}}(R)$ and the equidimensionalness of certain homomorphic images of
$R$. As a consequence we deduce that
${{f}_{I}}(R)=\max \{1,\text{ht}I\}$, and if
$\text{mAs}{{\text{s}}_{R}}(R/I)$ is contained in
$\text{As}{{\text{s}}_{R}}(R)$, then the ring
$R/I+{{\bigcup }_{n\ge 1}}(0{{:}_{R}}{{I}^{n}})$ is equidimensional of dimension dim
$R-1$. Moreover, we will obtain a lower bound for injective dimension of the local cohomology module
$H_{I}^{\text{ht}I}(R)$, in the case where
$(R,\mathfrak{m})$ is a complete equidimensional local ring.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2017
References
- 1
- Cited by