Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T04:43:51.009Z Has data issue: false hasContentIssue false

The Existence of Universal Inner Functions on the Unit Ball of ℂn

Published online by Cambridge University Press:  20 November 2018

P. M. Gauthier
Affiliation:
Département de Mathématiques et de Statistique, Université de Montréal, Montréal, QC, H3C 3J7 e-mail: [email protected]
J. Xiao
Affiliation:
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, A1C 5S7 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that there exists an inner function $I$ defined on the unit ball ${{\text{B}}^{n}}$ of ${{\mathbb{C}}^{n}}$ such that each function holomorphic on ${{\text{B}}^{n}}$ and bounded by 1 can be approximated by “non-Euclidean translates” of $I$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2005

References

[1] Aleksandrov, A. B., The existence of inner functions in a ball. Mat. Sb. 118(160)(1982), 147163.Google Scholar
[2] Aleksandrov, A. B., Function theory in the ball. (Translated from the Russian by Gauthier, P. M..) In: Several complex variables I, Encyclopaedia of Mathematical Sciences 8. Springer-Verlag, Berlin, 1994, pp. 110181.Google Scholar
[3] Birkhoff, G. D., Démonstration d’un théorème élémentaire sur les fonctions entières. C. R. Acad. Sci. Paris 189(1929), 473475.Google Scholar
[4] Chee, P. S., Universal functions in several complex variables. J. Austral. Math. Soc. Ser. A 28(1979), 189196.Google Scholar
[5] K.-G., Grosse-Erdmann, Universal families and hypercyclic operators. Bull. Amer.Math. Soc. 36(1999), 345381.Google Scholar
[6] Heins, M., A universal Blaschke product. Archiv Math. 6(1954), 4144.Google Scholar
[7] Helton, J. W., Optimal frequency domain design vs. an area of several complex variables. In: Robust Control of Linear Systems and Nonlinear Control, Progr. Systems Control Theory 4, Birkäuser, Boston, 1990, pp. 3359.Google Scholar
[8] Seidel, W. and Walsh, J. L., On approximation by euclidean and non-euclidean translations of an analytic function. Bull. Amer.Math. Soc. 47(1941), 916920.Google Scholar