Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T18:34:23.223Z Has data issue: false hasContentIssue false

Existence of Solutions for Abstract Non-Autonomous Neutral Differential Equations

Published online by Cambridge University Press:  20 November 2018

Eduardo Hernández
Affiliation:
Departamento de Computação e Matemática, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazile-mail: [email protected]
Donal O’Regan
Affiliation:
Department of Mathematics National University of Ireland Galway, Irelande-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we discuss the existence of mild and classical solutions for a class of abstract non-autonomous neutral functional differential equations. An application to partial neutral differential equations is considered.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Adimy, M. and Ezzinbi, K., A class of linear partial neutral functional-differential equations with nondense domain. J. Differential Equations 147(1998), no. 2, 285332. http://dx.doi.org/10.1006/jdeq.1998.3446 Google Scholar
[2] Balachandran, K., Shija, G., and Kim, J. H., Existence of solutions of nonlinear abstract neutral integrodifferential equations. Comput. Math. Appl. 48(2004), no. 10-11, 14031414. http://dx.doi.org/10.1016/j.camwa.2004.08.002 Google Scholar
[3] Balachandran, K. and Sakthivel, R., Existence of solutions of neutral functional integrodifferential equation in Banach spaces. Proc. Indian Acad. Sci. Math. Sci. 109(1999), no. 3, 325332. http://dx.doi.org/10.1007/BF02843536 Google Scholar
[4] Benchohra, M. and Ntouyas, S. K., Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces. J. Math. Anal. Appl. 258(2001), no. 2, 573590. http://dx.doi.org/10.1006/jmaa.2000.7394 Google Scholar
[5] Benchohra, M., Henderson, J., and Ntouyas, S. K., Existence results for impulsive multivalued semilinear neutral functional differential inclusions in Banach spaces. J. Math. Anal. Appl. 263(2001), no. 2, 763780. http://dx.doi.org/10.1006/jmaa.2001.7663 Google Scholar
[6] Cannarsa, P. and Sforza, D., Global solutions of abstract semilinear parabolic equations with memory terms. NoDEA Nonlinear Differential Equations. Appl. 10(2003), no. 4, 399430. http://dx.doi.org/10.1007/s00030-003-1004-2 Google Scholar
[7] Clément, P. and Nohel, J. A., Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels. SIAM J. Math. Anal. 12(1981), no. 4, 514535. http://dx.doi.org/10.1137/0512045 Google Scholar
[8] Clément, P. and Prüss, J., Global existence for a semilinear parabolic Volterra equation. Math. Z. 209(1992), no. 1, 1726. http://dx.doi.org/10.1007/BF02570816 Google Scholar
[9] Datko, R., Linear autonomous neutral differential equations in a Banach space. J. Diff. Equations 25(1977), no. 2, 258274. http://dx.doi.org/10.1016/0022-0396(77)90204-2 Google Scholar
[10] Dauer, J. P. and Balachandran, K., Existence of solutions of nonlinear neutral integrodifferential equations in Banach spaces. J. Math. Anal. Appl. 251(2000), no. 1, 93105. http://dx.doi.org/10.1006/jmaa.2000.7022 Google Scholar
[11] Fang, H. and Li, J., On the existence of periodic solutions of a neutral delay model of single-species population growth. J. Math. Anal. Appl. 259(2001), no. 1, 817. http://dx.doi.org/10.1006/jmaa.2000.7340 Google Scholar
[12] Freedman, H. I. and Kuang, Y., Some global qualitative analyses of a single species neutral delay differential population model. Rocky Mountain J. Math. 25(1995), no. 1, 201215. http://dx.doi.org/10.1216/rmjm/1181072278 Google Scholar
[13] Fu, X. and Liu, X., Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay. J. Math. Anal. Appl. 325(2007), no. 1, 249267. http://dx.doi.org/10.1016/j.jmaa.2006.01.048 Google Scholar
[14] Granas, A.. and Dugundji, J., Fixed Point Theory. Springer-Verlag, New York, 2003.Google Scholar
[15] Gurtin, M. E. and Pipkin, A. C., A general theory of heat conduction with finite wave speed. Arch. Rational Mech. Anal. 31(1968), no. 2, 113126. http://dx.doi.org/10.1007/BF00281373 Google Scholar
[16] Hale, J. K. Partial neutral functional-differential equations. Rev. Roumaine Math. Pures Appl. 39(1994), no. 4, 339344.Google Scholar
[17] Hale, J. K. and Lunel, S. M. Verduyn, Introduction to Functional-Differential Equations. Applied Mathematical Sciences 99. Springer-Verlag, New York, 1993.Google Scholar
[18] Henríquez, H. R., Periodic solutions of abstract neutral functional differential equations with infinite delay. Acta Math. Hungar. 121(2008), no. 3, 203227. http://dx.doi.org/10.1007/s10474-008-7009-x Google Scholar
[19] Hernández, E., Existence results for partial neutral integrodifferential equations with unbounded delay. J. Math. Anal. Appl. 292(2004), no. 1, 194210. http://dx.doi.org/10.1016/j.jmaa.2003.11.052 Google Scholar
[20] Hernández, E. and O’Regan, D., Existence results for abstract partial neutral differential equations. To appear in Proc. Amer. Math. Soc.Google Scholar
[21] Hernández, E. and McKibben, M., Some comments on: “Existence of solutions of abstract nonlinear second-order neutral functional integrodifferential equations.” [Comput. Math. Appl. 46 (2003), no. 8-9] Comput. Math. Appl. 50(2005), no. 5-6, 655669. http://dx.doi.org/10.1016/j.camwa.2005.08.001 Google Scholar
[22] Hernández, E. and Henríquez, H., Existence results for partial neutral functional-differential equation with unbounded delay. J. Math. Anal. Appl. 221(1998), no. 2, 452475. http://dx.doi.org/10.1006/jmaa.1997.5875 Google Scholar
[23] Hernández, E. and Henríquez, H., Existence of periodic solution of partial neutral functional-differential equation with unbounded delay. J. Math. Anal. Appl. 221(1998) no. 2, 499522. http://dx.doi.org/10.1006/jmaa.1997.5899 Google Scholar
[24] Kuang, Y., Qualitative analysis of one- or two-species neutral delay population models. SIAM J. Math. Anal. 23(1992), no. 1, 181200. http://dx.doi.org/10.1137/0523009 Google Scholar
[25] Li, Q., Cao, J., and Wan, S., Positive periodic solution for a neutral delay model in population. J. Biomath. 13(1998), no. 4, 435438.Google Scholar
[26] Lunardi, A., On the linear heat equation with fading memory. SIAM J. Math. Anal. 21(1990), no. 5, 12131224. http://dx.doi.org/10.1137/0521066 Google Scholar
[27] Lunardi, A., Analytic semigroups and optimal regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications 16. Birkhäauser Verlag, Basel, 1995.Google Scholar
[28] Nunziato, J. W., On heat conduction in materials with memory. Quart. Appl. Math. 29(1971), 187204.Google Scholar
[29] Wu, J. and Xia, H., Self-sustained oscillations in a ring array of coupled lossless transmission lines. J. Differential Equations 124(1996), no. 1, 247278. http://dx.doi.org/10.1006/jdeq.1996.0009 Google Scholar