Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T02:00:58.352Z Has data issue: false hasContentIssue false

Exceptional Sets in Hartogs Domains

Published online by Cambridge University Press:  20 November 2018

Piotr Kot*
Affiliation:
Politechnika Krakowska, Instytut Matematyki, ul. Warszawska 24, 31-155 Kraków, Poland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Assume that $\Omega$ is a Hartogs domain in ${{\mathbb{C}}^{1+n}}$, defined as $\Omega =\left\{ \left( z,w \right)\,\in \,{{\mathbb{C}}^{1+n}}\,:\left| z \right|\,<\,\mu \left( w \right),w\,\in H \right\}$, where $H$ is an open set in ${{\mathbb{C}}^{n}}$ and $\mu$ is a continuous function with positive values in $H$ such that –ln $\mu$ is a strongly plurisubharmonic function in $H$. Let ${{\Omega }_{w}}=\Omega \cap \left( \mathbb{C}\times \left\{ w \right\} \right)$. For a given set $E$ contained in $H$ of the type ${{G}_{\delta }}$ we construct a holomorphic function $f\in \mathbb{O}\left( \Omega \right)$ such that

$$E=\left\{ w\in {{\mathbb{C}}^{n}}:\int\limits_{{{\Omega }_{w}}}{{{\left| f\left( \cdot ,w \right) \right|}^{2}}d{{\mathfrak{L}}^{2}}=\infty } \right\}.$$

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2005

References

[1] Jakóbczak, P., The exceptional sets for functions from the Bergman space. Portugal.Math. (1) 50(1993), 115128.Google Scholar
[2] Jakóbczak, P., The exceptional sets in the circles for functions from the Bergman space. Proc. International Symposium Classical Analysis, Kazimierz, (1993), 4957.Google Scholar
[3] Jakóbczak, P., The exceptional sets for holomorphic functions in Hartogs domains. Complex Variables (Aachen) 32(1997), 8997.Google Scholar
[4] Jakóbczak, P., Description of exceptional sets in the circles for functions from the Bergman space. Czechoslovak Math. J. 47(1997), 633649.Google Scholar
[5] Jakóbczak, P., Preimages of exceptional sets by biholomorphic mappings. Atti Sem. Mat. Fis. Univ.Modena 48(1998), 7985.Google Scholar
[6] Jakóbczak, P., Complete Pluripolar Sets and Exceptional Sets for Functions from the Bergman Space. Complex Variables 42(2000), 1723.Google Scholar
[7] Rudin, W., Function Theory in the Unit Ball of n . Springer, New York, 1980.Google Scholar
[8] Sibony, N., Prolongement des fonctions holomorphes bornées et métrique du Carathéodory. Invent. Math. 29(1975), 205230.Google Scholar