Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T06:25:39.218Z Has data issue: false hasContentIssue false

Evaluation of the Dedekind Eta Function

Published online by Cambridge University Press:  20 November 2018

Robin Chapman
Affiliation:
Department of Mathematical Sciences, University of Exeter, EX4 4QE, UK e-mail: [email protected]
William Hart
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We extend the methods of Van der Poorten and Chapman for explicitly evaluating the Dedekind eta function at quadratic irrationalities. Via evaluation of Hecke $L$-series we obtain new evaluations at points in imaginary quadratic number fields with class numbers 3 and 4. Further, we overcome the limitations of the earlier methods and via modular equations provide explicit evaluations where the class number is 5 or 7.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2006

References

[1] Abel, N. H., Recherches sur les fonctions elliptiques. J Reine Angew. Math. 2(1828), 380382.Google Scholar
[2] Chapman, R. and van der Poorten, A. J., Binary quadratic forms and the eta function. In: Number Theory for the Millennium I, AK Peters, Natick MA, 2002, pp. 215–22.Google Scholar
[3] Cox, D. A., Primes of the Form x 2 + ny 2 : Fermat, Class Field Theory and Complex Multiplication. John Wiley & Sons, New York, 1989.Google Scholar
[4] Enge, A. and Morain, F., Comparing invariants for class fields of imaginary quadratic fields. In: Algorithmic Number Theory, Lectures Notes in Comput. Sci. 2369, Springer, Berlin, 2002, pp. 252266.Google Scholar
[5] Fröhlich, A. and Taylor, M. J., Algebraic Number Theory. Cambridge Studies in Advanced Mathematics 27, Cambridge University Press, Cambridge, 1993.Google Scholar
[6] Gee, A. and Stevenhagen, P., Generating class fields using Shimura reciprocity. In: Algorithmic Number Theory, Lecture Notes in Comput. Sci. 1423 Springer, Berlin, 1998, pp. 441453.Google Scholar
[7] Hajir, F. and Villegas, F. Rodriquez, Explicit elliptic units. I. Duke Math. J. 90(1997), 495521.Google Scholar
[8] Hart, William, Evaluation of the Dedekind eta function. Ph.D. Thesis, Macquarie University, Sydney, 2004.Google Scholar
[9] Hart, William, Schlaefli modular equations for generalized Weber functions. Ramanujan J., to appear.Google Scholar
[10] Huard, J. G., Kaplan, P., and Williams, K. S., The Chowla-Selberg formula for genera. Acta. Arith. 73(1995), no. 3, 271301.Google Scholar
[11] Kaneko, M., A generalization of the Chowla-Selberg formula and the zeta functions of quadratic orders. Proc. Japan Acad. Ser. A Math. Sci. 66(1990), no. 7, 201203.Google Scholar
[12] Nakkajima, Y. and Taguchi, Y., A generalization of the Chowla-Selberg formula. J. Reine Angew. Math. 419(1991), 119124.Google Scholar
[14] van der Poorten, A. J. and Williams, K. S., Values of the Dedekind eta function at quadratic irrationalities. Canad. J. Math. 51(1999), no. 1, 176224.Google Scholar
[15] Selbert, A. and Chowla, S., On Epstein's zeta-function. J. Reine Agnew. Math. 227(1967), 86110.Google Scholar
[16] Weber, H., Lehrbuch der Algebra. vol. 3, 3rd Edition. Chelsea, NY, 1979.Google Scholar
[17] Zhang, N. Y. and Williams, K. S., On the Epstein zeta function. Tamkang J. Math. 26(1995), no. 2, 165176.Google Scholar
[18] Zucker, I. J. and Robertson, M. M., Exact values for some two-dimensional lattice sums. J. Phys. A 8(1975), 874881.Google Scholar
[19] Zucker, I. J. and Robertson, M. M., Some properties of Dirichlet L-serie. J. Phys. A 9(1976), 12071214.Google Scholar
[20] Zucker, I. J. and Robertson, M. M., A systematic approach to the evaluation of Σ(m, n)≠(0,0)(am2 + bmn + cn2)–s . J. Phys. A 9(1976), 12151225.Google Scholar
[21] Zucker, I. J. and Robertson, M. M., Further aspects of the evaluation of Σ(m, n)≠(0,0)(am2 + bmn + cn2)–s . Math. Proc. Cambridge. Philos. Soc. 95(1984), 513.Google Scholar