Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T09:01:08.462Z Has data issue: false hasContentIssue false

Equivariant Witt Groups

Published online by Cambridge University Press:  20 November 2018

Jorge F. Morales*
Affiliation:
Louisiana State University, Departement of Mathematics, Bâton Rouge, LA 70803-4918, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper studies for a number field K and a finite group Γ the cokernel of the residue homomorphism .

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1990

References

1. Alexander, J. P., Conner, P. E., and Hamrick, G. C., Odd Order Group Actions and Witt Classification of Inner Products, Springer Lecture Notes 625, Berlin 1977.Google Scholar
2. Bayer, E., Definite unimodular lattices having an automorphism of given characteristic polynomial, Comment. Math. Helvetici 59 (1984) 509538.Google Scholar
3. Curtis, C. W. and Reiner, I., Methods of Representation Theory , vol. I and II, Wiley & Sons, New York, 1987.Google Scholar
4. Dress, A., Induction and structure theorems for orthogonal representations of finite groups, Annals of Math. 102, No 2 (1973), 291325.Google Scholar
5. Husemoller, D. and Milnor, J., Symmetric Bilinear Forms, Springer-Verlag, Berlin 1973.Google Scholar
6. Lang, S., Algebraic Number Theory, Addison-Wesley 1970.Google Scholar
7. Milnor, J., Introduction to K-Theory, Princeton University Press, Princeton 1971.Google Scholar
8. Morales, J. F., Maximal hermitian forms over TG, Comment. Math. Helvetici 63 No 2 (1988), 209 225.Google Scholar
9. Quebbeman, H. G., W. Scharlau, and M. Schulte, Quadratic and hermitian forms in additive and abelian categories, J . Algebra 59 (1979), 264289.Google Scholar
10. Reiner, I., Maximal Orders, Academic Press, London 1975.Google Scholar
11. Reiner, I. and Roggenkamp, K. W., Integral Representations, Springer Lecture Notes 744, Berlin 1979.Google Scholar
12. Scharlau, W., Quadratic and Hermitian Forms, Springer-Verlag, Berlin 1985.Google Scholar
13. Scharlau, W., Involutions on orders I, J. Reine Angew. Math 268-269 (1974), 190202.Google Scholar
14. Washington, L. C., Introduction to Cyclotomic Fields, Springer-Verlag, Berlin, 1982.Google Scholar