Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:39:06.793Z Has data issue: false hasContentIssue false

Equivalent Definitions of Infinite Positive Elements in Simple C*-algebras

Published online by Cambridge University Press:  20 November 2018

Xiaochun Fang
Affiliation:
Department of Mathematics, Tongji University, Shanghai, China, 200092 e-mail: [email protected] e-mail: [email protected]
Lin Wang
Affiliation:
Department of Mathematics, Tongji University, Shanghai, China, 200092 e-mail: [email protected] e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the equivalence of three definitions given by different comparison relations for infiniteness of positive elements in simple ${{C}^{*}}$-algebras.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[1] Blackadar, B., K-theory for operator algebras. Mathematical Sciences Research Institute Publications, 5, Springer-Verlag, New York, 1986.Google Scholar
[2] Blackadar, B. and Cuntz, J., The structure of stable algebraically simple C*-algebras. Amer. J. Math. 104(1982), no. 4, 813822. doi:10.2307/2374206Google Scholar
[3] Cuntz, J., Simple C*-algebras generated by isometries. Comm. Math. Phys. 57(1977), no. 2, 173185. doi:10.1007/BF01625776Google Scholar
[4] Cuntz, J., The structure of multiplication and addition in simple C*-algebras. Math. Scand. 40(1977), no. 2, 215233.Google Scholar
[5] Cuntz, J., Dimension functions on simple C*-algebras. Math. Ann. 233(1978), no. 2, 145153. doi:10.1007/BF01421922Google Scholar
[6] Cuntz, J., K-theory for certain C*-algebras. Ann. of Math. 113(1981), no. 1, 181197. doi:10.2307/1971137Google Scholar
[7] Elliott, G. A. and Fang, X., Simple inductive limits of C*-algebras with building blocks from spheres of odd dimension. In: Operator algebra and operator theory, Contemp. Math., 228, American Mathematical Society, Providence, RI, 1998, pp. 7986.Google Scholar
[8] Fang, X., The invariant continuous-trace C*-algebras by the actions of compact abelian groups. Chinese Ann. of Math.(B) 19(1998), no. 4, 489498.Google Scholar
[9] Fang, X., The simplicity and real rank zero property of the inductive limit of continuous trace C*-algebras. Analysis 19(1999), no. 4, 377389.Google Scholar
[10] Fang, X., Graph C*-algebras and their ideals defined by Cuntz–Krieger family of possibly row-infinite directed graphs. Integral Equations Operator Theory 54(2006), no. 3, 301316. doi:10.1007/s00020-004-1363-zGoogle Scholar
[11] Fang, X., The real rank zero property of crossed product. Proc. Amer. Math. Soc. 134(2006), no. 10, 30153024. doi:10.1090/S0002-9939-06-08357-2Google Scholar
[12] Kirchberg, E. and Rørdam, M., Infinite non-simple C*-algebras: absorbing the Cuntz algebra . Adv. Math. 167(2002), no. 2, 195264. doi:10.1006/aima.2001.2041Google Scholar
[13] Lin, H., An introduction to the classification of amenable C*-algebras. World Scientific Publishing Co., Inc., River Edge, NJ, 2001.Google Scholar
[14] Lin, H., Classification of simple C*-algebras and higher dimensional noncommutative tori. Ann. of Math. 157(2003), no. 2, 521544. doi:10.4007/annals.2003.157.521Google Scholar
[15] Lin, H. and Zhang, S., On infinite simple C*-algebras. J. Funct. Anal. 100(1991), no. 1, 221231. doi:10.1016/0022-1236(91)90109-IGoogle Scholar
[16] Pedersen, G. K., C*-algebras and their automorphism groups. London Mathematical Society Monographs, 14, Academic Press, London–New York, 1979.Google Scholar
[17] Rørdam, M., Ideals in the multiplier algebra of a stable C*-algebra. J. Operator Theory 25(1991), no. 2, 283298.Google Scholar
[18] Rørdam, M., On the structure of simple C*-algebras tensored with a UHF-algebra. II. J. Funct. Anal. 107(1992), no. 2, 255269. doi:10.1016/0022-1236(92)90106-SGoogle Scholar
[19] Rørdam, M., A simple C*-algebra with a finite and an infinite projection. Acta Math. 191(2003), no. 1, 109142. doi:10.1007/BF02392697Google Scholar
[20] Toms, A. S., On the classification problem for nuclear C*-algebras. Ann. of Math. 167(2008), no. 3, 10291044. doi:10.4007/annals.2008.167.1029Google Scholar