Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T22:36:32.886Z Has data issue: false hasContentIssue false

Embedding Theorem for Inhomogeneous Besov and Triebel–Lizorkin Spaces on RD-spaces

Published online by Cambridge University Press:  20 November 2018

Yanchang Han*
Affiliation:
School of Mathematic Sciences, South China Normal University, Guangzhou, 510631, P.R. China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article we prove an embedding theorem for inhomogeneous Besov and Triebel–Lizorkin spaces on $\text{RD}$-spaces. The crucial idea is to use the geometric density condition on the measure.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[Chr] Christ, M., A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601628.Google Scholar
[CW1] Coifman, R.R. and Weiss, G., Analyse harmonique non-commutative sur certains espaces homogènes. Étude de certaines intégrales singulières, Lecture Notes in Math. 242, Springer-Verlag, Berlin, 1971.Google Scholar
[CW2] Coifman, R.R. and Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569645. http://dx.doi.Org/10.1090/S0002-9904-1977-14325-5 Google Scholar
[DJDS] David, G., Journé, J.-L. and Semmes, S., Calderôn-Zygmund operators, para-accretive functions and interpolation, Rev. Mat. Iberoamericana 1 (1985), no. 4,1-56. http://dx.doi.Org/10.4171/RM1/17 Google Scholar
[DH] Deng, D. and Han, Y.S., Harmonic analysis on spaces of homogeneous type, Lecture Notes in Math., vol. 1966, Springer-Verlag, Berlin, 2009, with a preface by Yves Meyer.Google Scholar
[FS] Fefferman, C. and Stein, E.M., HP spaces of several variables, Acta Math. 129 (1972), 137195. http://dx.doi.Org/10.1007/BF02392215 Google Scholar
[FJ] Frazier, M. and Jawerth, B., A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34170. http://dx.doi.Org/10.1016/0022-1236(90)90137-A Google Scholar
[HI] Han, Y.S., Calderon-type reproducing formula and the Tb theorem, Rev. Mat. Iberoamericana 10 (1994), 5191.Google Scholar
[H2] Han, Y.S., Plancherel-Pôlya type inequality on spaces of homogeneous type and its applications, Proc. Amer. Math. Soc. 126 (1998), no. 11, 33153327. http://dx.doi.Org/10.1090/S0002-9939-98-04445-1 Google Scholar
[H3] Han, Y.S., Embedding theorem for the Besov and Triebel-Lizorkin spaces on spaces of homogeneous type, Proc. Amer. Math. Soc. 123 (1995), 21812189. http://dx.doi.Org/10.1090/S0002-9939-1995-1249880-9 Google Scholar
[HL] Han, Y.S. and Lin, C., Embedding theorem on spaces of homogeneous type, J. Fourier Anal. Appl. 8(2002), 291307. http://dx.doi.Org/10.1007/s00041-002-004-5 Google Scholar
[HS] Han, Y.S. and E.T. Sawyer, Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces, Mem. Amer. Math. Soc. 110 (1994), no. 530, vi + 126 pp.Google Scholar
[HMY1] Han, Y.S., Millier, D. and Yang, D., A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces, Abstr. Appl. Anal., Vol. 2008, Article ID 893409. 250 pages.Google Scholar
[HMY2] Han, Y.S., Millier, D. and Yang, D., Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type, Mathematische Nachrichten 279(2006), 15051537. http://dx.doi.Org/10.1 OO2/mana.2OO610435 Google Scholar
[J] Jawerth, B., Some observations on Besov and Lizorkin-Triebel spaces, Math. Scand. 40 (1977), 94104.Google Scholar
[MS] Macias, R.A. and Segovia, C., Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), 257270. http://dx.doi.Org/10.1016/0001-8708(79)90012-4 Google Scholar
[NS] Nagel, A. and Stein, E.M., On the product theory of singular integrals, Rev. Mat. Iberoamericana 20 (2004), 531561. http://dx.doi.Org/10.4171/RMI/400 Google Scholar
[SI] Sturm, K. T., On the geometry of measure spaces I, Acta Math. 196, (2006), 65131. http://dx.doi.Org/10.1007/s11511-006-0002-8 Google Scholar
[S2] Sturm, K. T., On the geometry of measure spaces II, Acta Math. 196, (2006), 133177. http://dx.doi.Org/10.1007/s11511-006-0003-7 Google Scholar
[T] Triebel, H., Theory of Function Spaces, Birkhâuser-Verlag, Basel, 1983.Google Scholar
[Y] Yang, D., Embedding theorems ofBesov and Lizorkin-Triebel spaces on spaces of homogeneous type, Science in China, Series A Mathematics 46, (2003), 187199. http://dx.doi.Org/10.1360/03ys9020 Google Scholar