Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T02:26:19.289Z Has data issue: false hasContentIssue false

Deligne–Lusztig varieties and basic EKOR strata

Published online by Cambridge University Press:  29 June 2020

Haining Wang*
Affiliation:
Department of Mathematics, McGill University, 805 Sherbrooke St W, Montreal, QCH3A 0B9, Canada

Abstract

Using the axioms of He and Rapoport for the stratifications of Shimura varieties, we explain a result of Görtz, He, and Nie that the EKOR strata contained in the basic loci can be described as a disjoint union of Deligne–Lusztig varieties. In the special case of Siegel modular varieties, we compare their descriptions to that of Görtz and Yu for the supersingular Kottwitz-Rapoport strata and to the descriptions of Harashita and Hoeve for the supersingular Ekedahl–Oort strata.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhatt, B. and Scholze, P., Projectivity of the Witt vector affine Grassmannian . Invent. Math. 209(2017), no. 2, 329423. https://doi.org/10.1007/s00222-016-0710-4 CrossRefGoogle Scholar
Deligne, P. and Lusztig, G., Representations of reductive groups over finite fields . Ann. of Math. (2) 103(1976), no. 1, 103161. https://doi.org/10.2307/1971021 CrossRefGoogle Scholar
Genestier, A. and Ngô, B. C., Alcôves et $p$ -rang des variétés abéliennes . Ann. Inst. Fourier (Grenoble) vol. 52(2002), no. 6, 16651680.Google Scholar
Görtz, U., On the flatness of models of certain Shimura varieties of PEL-type . Math. Ann. 321(2001), no. 3, 689727. https://doi.org/10.1007/s002080100250 CrossRefGoogle Scholar
Görtz, U., On the flatness of local models for the symplectic group . Adv. Math. 351(2003), no. 1, 89115. https://doi.org/10.1016/S0001-8708(02)00062-2 CrossRefGoogle Scholar
Görtz, U. and He, X.-H., Basic loci of Coxeter type in Shimura varieties . Camb. J. Math. 3(2015), no. 3, 323353.CrossRefGoogle Scholar
Görtz, U. and He, X.-H., Erratum to: Basic loci in Shimura varieties of Coxeter type. Camb. J. Math. 6(2018), no. 1, 8992. https://doi.org/10.4310/CJM.2018.v6.n1.e4 CrossRefGoogle Scholar
Görtz, U., He, X.-H., and Nie, S.-A., Fully Hodge-Newton decomposable Shimura varieties . Peking Math. J. 2(2019), 99154. https://doi.org/10.1007/s42543-019-00013-2 CrossRefGoogle Scholar
Görtz, U. and Hoeve, M., Ekedahl-Oort strata and Kottwitz-Rapoport strata . J. Algebra 351(2012), 160174. https://doi.org/10.1016/j.jalgebra.2011.10.039 CrossRefGoogle Scholar
Görtz, U. and Yu, C.-F., Supersingular Kottwitz-Rapoport strata and Deligne–Lusztig varieties . J. Inst. Math. Jussieu 9(2010), no. 2, 357390. https://doi.org/10.1017/S1474748009000218 CrossRefGoogle Scholar
Görtz, U. and Yu, C.-F., The supersingular locus in Siegel modular varieties with Iwahori level structure . Math. Ann. 353(2012), no. 2, 465498. https://doi.org/10.1007/s00208-011-0689-5 CrossRefGoogle Scholar
Hamacher, P. and Kim, W., l-Adic etale cohomology of Shimura varieties of Hodge type with non-trivial coefficient . Math. Ann. 375(2019), no. 3–4, 9731044. https://doi.org/10.1007/s00208-019-01815-6 CrossRefGoogle Scholar
Harashita, S., Ekedahl-Oort strata contained in the supersingular locus and Deligne-Lusztig varieties . J. Algebr. Geom. 19(2010), no. 3, 419438. https://doi.org/10.1090/S1056-3911-09-00519-0 CrossRefGoogle Scholar
He, X.-H., Geometric and homological properties of affine Deligne-Lusztig varieties . Ann. of Math. (2) 179(2014), no. 1, 367404. https://doi.org/10.4007/annals.2014.179.1.6 CrossRefGoogle Scholar
He, X.-H., Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties . Ann. Sci. Éc. Norm. Supér. (4) 49(2016), no. 5, 11251141. https://doi.org/10.24033/asens.2305 CrossRefGoogle Scholar
He, H., Li, C., and Zhu, Y.-H., Fine Deligne–Lusztig varieties and arithmetic fundamental lemmas . Preprint, 2019. arXiv:1901.02870.CrossRefGoogle Scholar
He, X.-H. and Rapoport, M., Stratifications in the reduction of Shimura varieties . Manuscripta Math. 152(2017), no. 3–4, 317343. https://doi.org/10.1017/fms.2019.45 CrossRefGoogle Scholar
Helm, D., Tian, Y.-C., and Xiao, L., Tate cycles on some unitary Shimura varieties mod p . Algebra Number Theory 11(2017), no. 10, 22132288. https://doi.org/10.2140/ant.2017.11.2213 CrossRefGoogle Scholar
Hoeve, M., Ekedahl-Oort strata in the supersingular locus . J. Lond. Math. Soc. (2) 81(2010), no. 1, 129141. https://doi.org/10.1112/jlms/jdp061 CrossRefGoogle Scholar
Kisin, M., Mod p points on Shimura varieties of abelian type . J. Amer. Math. Soc. 30(2017), no. 3, 819914. https://doi.org/10.1090/jams/867 CrossRefGoogle Scholar
Langlands, R. and Rapoport, M., Shimuravarietäten und Gerben . J. Reine Angew. Math. 378 (1987), 113220.Google Scholar
Moonen, B., Group schemes with additional structures and Weyl group cosets . In: Moduli of abelian varieties (Texel Island, 1999), Progr. Math., 195, Birkhäuser, Basel, 2001, pp. 255298.CrossRefGoogle Scholar
Rapoport, M., A guide to the reduction modulo $p$ of Shimura varieties . Automorphic forms. I. Astérisque 298(2005), 271318.Google Scholar
Rapoport, M. and Richartz, M., On the classification and specialization of $F$ -isocrystals with additional structure . Compositio Math. 103(1996), no. 2, 153181.Google Scholar
Rapoport, M., Terstiege, U., and Zhang, W., On the arithmetic fundamental lemma in the minuscule case . Compos. Math. 149(2013), no. 10, 16311666. https://doi.org/10.1112/S0010437X13007239 CrossRefGoogle Scholar
Rapoport, M. and Viehmann, E., Towards a theory of local Shimura varieties . Münster J. Math. 7(2014), no. 1, 273326.Google Scholar
Rapoport, M. and Zink, T., Period spaces for $p$ -divisible groups. Ann. Math. Stud., 141, Princeton University Press, Princeton, NJ, 1996. https://doi.org/1015/9781400882601 Google Scholar
Shen, X., Yu, C.-F., and Zhang, C., EKOR strata for Shimura varieties with parahoric level structure. Preprint, 2019.Google Scholar
Viehmann, E., Truncations of level 1 of elements in the loop group of a reductive group . Ann. of Math. (2) 179(2014), no. 3, 10091040. https://doi.org/10.4007/annals.2014.179.3.3 CrossRefGoogle Scholar
Vollaard, I., The supersingular locus of the Shimura variety for $\omega\in^{c}W$ . Canad. J. Math. 62(2010), no. 3, 668720. https://doi.org/10.4153/CJM-2010-031-2 CrossRefGoogle Scholar
Vollaard, I. and Wedhorn, T., The supersingular locus of the Shimura variety of $\omega\in^{c}W.$ II . Invent. Math. 184(2011), no. 3, 591627. https://doi.org/10.1007/s00222-010-0299-y CrossRefGoogle Scholar
Xiao, L. and Zhu, X.-W., Cycles on Shimura varieties via geometric Satake . Preprint, 2017.Google Scholar
Zhou, R., Mod-p isogeny classes on Shimura varieties with parahoric level structure . Preprint, 2019.CrossRefGoogle Scholar
Zhu, X.-W., Affine Grassmannians and the geometric Satake in mixed characteristic . Ann. of Math. (2) 185(2017), no. 2, 403492. https://doi.org/10.4007/annals.2017.185.2.2 CrossRefGoogle Scholar