Article contents
Deligne–Lusztig varieties and basic EKOR strata
Published online by Cambridge University Press: 29 June 2020
Abstract
Using the axioms of He and Rapoport for the stratifications of Shimura varieties, we explain a result of Görtz, He, and Nie that the EKOR strata contained in the basic loci can be described as a disjoint union of Deligne–Lusztig varieties. In the special case of Siegel modular varieties, we compare their descriptions to that of Görtz and Yu for the supersingular Kottwitz-Rapoport strata and to the descriptions of Harashita and Hoeve for the supersingular Ekedahl–Oort strata.
MSC classification
Primary:
14G35: Modular and Shimura varieties
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2020
References
Bhatt, B. and Scholze, P.,
Projectivity of the Witt vector affine Grassmannian
. Invent. Math. 209(2017), no. 2, 329–423. https://doi.org/10.1007/s00222-016-0710-4
CrossRefGoogle Scholar
Deligne, P. and Lusztig, G.,
Representations of reductive groups over finite fields
. Ann. of Math. (2) 103(1976), no. 1, 103–161. https://doi.org/10.2307/1971021
CrossRefGoogle Scholar
Genestier, A. and Ngô, B. C.,
Alcôves et
$p$
-rang des variétés abéliennes
. Ann. Inst. Fourier (Grenoble) vol. 52(2002), no. 6, 1665–1680.Google Scholar
Görtz, U.,
On the flatness of models of certain Shimura varieties of PEL-type
. Math. Ann. 321(2001), no. 3, 689–727. https://doi.org/10.1007/s002080100250
CrossRefGoogle Scholar
Görtz, U.,
On the flatness of local models for the symplectic group
. Adv. Math. 351(2003), no. 1, 89–115. https://doi.org/10.1016/S0001-8708(02)00062-2
CrossRefGoogle Scholar
Görtz, U. and He, X.-H.,
Basic loci of Coxeter type in Shimura varieties
. Camb. J. Math. 3(2015), no. 3, 323–353.CrossRefGoogle Scholar
Görtz, U. and He, X.-H., Erratum to: Basic loci in Shimura varieties of Coxeter type. Camb. J. Math. 6(2018), no. 1, 89–92. https://doi.org/10.4310/CJM.2018.v6.n1.e4
CrossRefGoogle Scholar
Görtz, U., He, X.-H., and Nie, S.-A.,
Fully Hodge-Newton decomposable Shimura varieties
. Peking Math. J. 2(2019), 99–154. https://doi.org/10.1007/s42543-019-00013-2
CrossRefGoogle Scholar
Görtz, U. and Hoeve, M.,
Ekedahl-Oort strata and Kottwitz-Rapoport strata
. J. Algebra 351(2012), 160–174. https://doi.org/10.1016/j.jalgebra.2011.10.039
CrossRefGoogle Scholar
Görtz, U. and Yu, C.-F.,
Supersingular Kottwitz-Rapoport strata and Deligne–Lusztig varieties
. J. Inst. Math. Jussieu 9(2010), no. 2, 357–390. https://doi.org/10.1017/S1474748009000218
CrossRefGoogle Scholar
Görtz, U. and Yu, C.-F.,
The supersingular locus in Siegel modular varieties with Iwahori level structure
. Math. Ann. 353(2012), no. 2, 465–498. https://doi.org/10.1007/s00208-011-0689-5
CrossRefGoogle Scholar
Hamacher, P. and Kim, W.,
l-Adic etale cohomology of Shimura varieties of Hodge type with non-trivial coefficient
. Math. Ann. 375(2019), no. 3–4, 973–1044. https://doi.org/10.1007/s00208-019-01815-6
CrossRefGoogle Scholar
Harashita, S.,
Ekedahl-Oort strata contained in the supersingular locus and Deligne-Lusztig varieties
. J. Algebr. Geom. 19(2010), no. 3, 419–438. https://doi.org/10.1090/S1056-3911-09-00519-0
CrossRefGoogle Scholar
He, X.-H.,
Geometric and homological properties of affine Deligne-Lusztig varieties
. Ann. of Math. (2) 179(2014), no. 1, 367–404. https://doi.org/10.4007/annals.2014.179.1.6
CrossRefGoogle Scholar
He, X.-H.,
Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties
. Ann. Sci. Éc. Norm. Supér. (4) 49(2016), no. 5, 1125–1141. https://doi.org/10.24033/asens.2305
CrossRefGoogle Scholar
He, H., Li, C., and Zhu, Y.-H.,
Fine Deligne–Lusztig varieties and arithmetic fundamental lemmas
. Preprint, 2019. arXiv:1901.02870.CrossRefGoogle Scholar
He, X.-H. and Rapoport, M.,
Stratifications in the reduction of Shimura varieties
. Manuscripta Math. 152(2017), no. 3–4, 317–343. https://doi.org/10.1017/fms.2019.45
CrossRefGoogle Scholar
Helm, D., Tian, Y.-C., and Xiao, L.,
Tate cycles on some unitary Shimura varieties mod p
. Algebra Number Theory 11(2017), no. 10, 2213–2288. https://doi.org/10.2140/ant.2017.11.2213
CrossRefGoogle Scholar
Hoeve, M.,
Ekedahl-Oort strata in the supersingular locus
. J. Lond. Math. Soc. (2) 81(2010), no. 1, 129–141. https://doi.org/10.1112/jlms/jdp061
CrossRefGoogle Scholar
Kisin, M.,
Mod p points on Shimura varieties of abelian type
. J. Amer. Math. Soc. 30(2017), no. 3, 819–914. https://doi.org/10.1090/jams/867
CrossRefGoogle Scholar
Langlands, R. and Rapoport, M.,
Shimuravarietäten und Gerben
. J. Reine Angew. Math. 378 (1987), 113–220.Google Scholar
Moonen, B.,
Group schemes with additional structures and Weyl group cosets
. In: Moduli of abelian varieties (Texel Island, 1999), Progr. Math., 195, Birkhäuser, Basel, 2001, pp. 255–298.CrossRefGoogle Scholar
Rapoport, M.,
A guide to the reduction modulo
$p$
of Shimura varieties
.
Automorphic forms. I. Astérisque 298(2005), 271–318.Google Scholar
Rapoport, M. and Richartz, M.,
On the classification and specialization of
$F$
-isocrystals with additional structure
. Compositio Math. 103(1996), no. 2, 153–181.Google Scholar
Rapoport, M., Terstiege, U., and Zhang, W.,
On the arithmetic fundamental lemma in the minuscule case
. Compos. Math. 149(2013), no. 10, 1631–1666. https://doi.org/10.1112/S0010437X13007239
CrossRefGoogle Scholar
Rapoport, M. and Viehmann, E.,
Towards a theory of local Shimura varieties
. Münster J. Math. 7(2014), no. 1, 273–326.Google Scholar
Rapoport, M. and Zink, T., Period spaces for
$p$
-divisible groups. Ann. Math. Stud., 141, Princeton University Press, Princeton, NJ, 1996. https://doi.org/1015/9781400882601
Google Scholar
Shen, X., Yu, C.-F., and Zhang, C.,
EKOR strata for Shimura varieties with parahoric level structure.
Preprint, 2019.Google Scholar
Viehmann, E.,
Truncations of level 1 of elements in the loop group of a reductive group
. Ann. of Math. (2) 179(2014), no. 3, 1009–1040. https://doi.org/10.4007/annals.2014.179.3.3
CrossRefGoogle Scholar
Vollaard, I.,
The supersingular locus of the Shimura variety for
$\omega\in^{c}W$
. Canad. J. Math. 62(2010), no. 3, 668–720. https://doi.org/10.4153/CJM-2010-031-2
CrossRefGoogle Scholar
Vollaard, I. and Wedhorn, T.,
The supersingular locus of the Shimura variety of
$\omega\in^{c}W.$
II
. Invent. Math. 184(2011), no. 3, 591–627. https://doi.org/10.1007/s00222-010-0299-y
CrossRefGoogle Scholar
Xiao, L. and Zhu, X.-W.,
Cycles on Shimura varieties via geometric Satake
. Preprint, 2017.Google Scholar
Zhou, R.,
Mod-p isogeny classes on Shimura varieties with parahoric level structure
. Preprint, 2019.CrossRefGoogle Scholar
Zhu, X.-W.,
Affine Grassmannians and the geometric Satake in mixed characteristic
. Ann. of Math. (2) 185(2017), no. 2, 403–492. https://doi.org/10.4007/annals.2017.185.2.2
CrossRefGoogle Scholar
- 1
- Cited by