No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let M be a circular CR manifold and let N be a rigid CR manifold in some complex vector spaces. The problem of the existence of local CR mappings from M into N is considered. Conditions are given which ensure that the space of such CR mappings depends on a finite number of parameters. The idea of the proof of the main result relies on a Bishop type equation for CR mappings. Roughly speaking, we look for CR mappings from M into N in the form F = (ƒ,g), we assume that g is given, then we find ƒ in terms of g and some parameters, and finally we look for conditions on g. It works independently of assumptions on the Levi forms of M and N, and there is also some freedom on the codimension of the manifolds.