No CrossRef data available.
Article contents
Concordance des nœuds de dimension 4
Published online by Cambridge University Press: 20 November 2018
Résumé
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Nous démontrons que tous les plongements d’une variété compacte sans bord et simplement connexe de dimension quatre dans la sphère de dimension six sont concordants.
Abstract
We prove that for a simply connected closed 4-dimensional manifold, its embeddings into the sphere of dimension 6 are all concordant to each other.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2007
References
Références
[2] Blanloeil, V. et Saeki, O., Cobordisme des surfaces plongées dans S
4
. Osaka J.Math.
42(2005), 751–765.Google Scholar
[3] Cappell, S. and Shaneson, J., Embeddings and immersions of four-dimensional manifolds in
R
6
. Dans: Geometric Topology, Academic Press, New York, 1979, pp. 301–303.Google Scholar
[4] Erle, D., Quadratische Formen als Invarianten von Einbettungen der Kodimensio 2
Topology
8(1969), 99–114.Google Scholar
[5] Freedman, M., The topology of four-dimensional manifolds. J. Differential Geom.
17(1982), no. 3, 357–453.Google Scholar
[6] Kervaire, M. A., Les noeuds de dimensions supérieures. Bull. Soc. Math. France
93(1965), 225–271.Google Scholar
[7] Kotschick, D., Non-trivial harmonic spinors on certain algebraic surfaces. Dans: Einstein Metrics and Yang-Mills Connections. Lecture Notes in Pure and Appl. Math. 145, Dekker, New York, 1993, pp. 85–88.Google Scholar
[8] Kotschick, D., Orientations and geometrisations of compact complex surfaces. Bull. London Math. Soc.
29(1997), no. 2, 145–149.Google Scholar
[10] Moishezon, B. and Teicher, M., Existence of simply connected algebraic surfaces of general type with positive and zero indices. Proc. Nat. Acad. Sci. U.S.A.
83(1986), no. 18, 6665–6666.Google Scholar
[11] Moishezon, B. and Teicher, M., Simply-connected algebraic surfaces of positive index. Invent. Math.
89(1987), no. 3, 601–643.Google Scholar
[12] Park, J., The geography of spin symplectic 4-manifolds. Math. Z.
240(2002), no. 2, 405–421.Google Scholar
[13] Ruberman, D., Imbedding four-manifolds and slicing links. Math. Proc. Cambridge Philos. Soc.
91(1982), no. 1, 107–110.Google Scholar
[14] Vogt, R., Cobordismus von Knoten. Dans: Knot Theory. Lecture Notes in Math. 685, Springer-Verlag, Berlin, 1978, pp. 218–226.Google Scholar
[15] Vogt, R., Cobordismus von hochzusammenhängenden Knoten. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1978, Bonner Mathematische Schriften 116, Universität Bonn, Mathematisches Institut, Bonn, 1980.Google Scholar
[16] Wall, C. T. C., On simply-connected 4-manifolds. J. London Math. Soc.
39(1964), 141–149.Google Scholar
[17] Wallace, A. H., Modifications and cobounding manifolds. Canad. J. Math.
12(1960), 503–528.Google Scholar
You have
Access