Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T21:36:14.812Z Has data issue: false hasContentIssue false

A Completely General Rabinowi1sch Criterion for Complex Quadratic Fields

Published online by Cambridge University Press:  20 November 2018

R. A. Mollin*
Affiliation:
Mathematics Department, University of Calgary, Calgary, Alberta, T2N 1N4, e-mail:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide a criterion for the class group of a complex quadratic field to have exponent at most 2. This is given in terms of the factorization of a generalized Euler-Rabinowitsch polynomial and has consequences for consecutive distinct initial prime-producing quadratic polynomials which we cite as applications.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1995

References

1. Levy, A., Bull, de Math., Elémentaires 19(1912), 36.Google Scholar
2. Louboutin, S., Minorationes (sous l'hypothèse de Riemann généralisée) des nombres de classes des corps quadratiques imaginaires, C. R. Acad. Sci. Paris t., Série 1 310(1990), 795800.Google Scholar
3. Mollin, R. A., Orders in Quadratic Fields I, Proc. Japan Acad., Ser. A 69(1993), 4548.Google Scholar
4. Mollin, R. A., Orders in Quadratic Fields III, Proc. Japan Acad., Ser. A 70(1994), 176181.Google Scholar
5. Sierpinski, W., Elementary Theory of Numbers, A. Schinzel, éd., Polish Scientific Publishers, Warsaw (1987).Google Scholar
6. Van der Pol, B. and Speziali, P., The primes in k(Q, Indag. Math. 13(1951), 915.Google Scholar
7. Weinberger, P. J., Exponents of the class groups of complex quadratic fie Ids, Acta. Arith. 22( 1973), 117124.Google Scholar