Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T16:23:41.426Z Has data issue: false hasContentIssue false

Compact Multipolar Sets

Published online by Cambridge University Press:  20 November 2018

Kohur Gowrisankaran
Affiliation:
McGill University Montreal, Quebec
Ramasamy Jesuraj
Affiliation:
Digital Computer Corporation Littleton, Mass. U. S. A
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is proved that a compact subset of a finite product of Brelot harmonic spaces is multipolar if it is a locally multipolar set.

Résumé

Résumé

On démontre que un ensemble compact dans un produit fini des espaces harmoniques de Brelot est multipolar si l'ensemble est localement multipolar.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

[J] Jesuraj, R., Continuous functions on multipolar sets, Proc. AMS 99(1987),331338.Google Scholar
[S] Singman, D., Exceptional sets in a product of harmonic spaces and applications. Ph.D. Thesis, McGill Univ. Montreal, 1980.Google Scholar