Article contents
The Co-annihilating-ideal Graphs of Commutative Rings
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let $R$ be a commutative ring with identity. The co-annihilating-ideal graph of $R$, denoted by ${{\mathcal{A}}_{R}}$, is a graph whose vertex set is the set of all non-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent whenever $\text{Ann}\left( I \right)\,\cap \,\text{Ann}\left( J \right)\,=\,\left\{ 0 \right\}$. In this paper we initiate the study of the co-annihilating ideal graph of a commutative ring and we investigate its properties.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2017
References
[1]
Aalipour, G., Akbari, S., Behboodi, M., Nikandish, R.,Nikmehr, M. J., and Shaveisi, F., The classification of the annihilating-ideal graph of a commutative ring.
Algebra Colloq.
21(2014), 249–256. http://dx.doi.Org/10.1142/S1005386714000200
Google Scholar
[2]
Aalipour, G., Akbari, S., Nikandish, R.,Nikmehr, M. J., and Shaveisi, E., Minimal prime ideals and cycles in annihilating-ideal graph.
Rocky Mountain J. Math.
43(2013), 1415–1425. http://dx.doi.Org/10.1216/RMJ-2O13-43-5-1415
Google Scholar
[3]
Aalipour, G., Akbari, S., Nikandish, R.,Nikmehr, M. J., and Shaveisi, E., On the coloring of the annihilating-ideal graph of a commutative ring.
Discrete Math.
312(2012), 2620–2626. http://dx.doi.Org/10.1016/j.disc.2011.10.020
Google Scholar
[4]
Aliniaeifard, F., Behboodi, M., Mehdi-Nezhad, E., and Rahimi, A.M., The annihilating-ideal graph of a commutative ring with respect to an ideal.
Comm. Algebra
42(2014), 2269–2284. http://dx.doi.Org/10.1080/00927872.2012.753606
Google Scholar
[5]
Akbari, S., Maimani, H.R., and Yassemi, S., When a zero-divisor graph is planar or a complete r-partitegraph.
J. Algebra
270(2003), 169–180. http://dx.doi.Org/10.1016/S0021-8693(03)00370-3
Google Scholar
[6]
Akbari, S. and Mohammadian, A., Zero-divisor graphs of non-commutative rings.
J. Algebra
296(2006), 462–479. http://dx.doi.Org/10.1016/j.jalgebra.2005.07.007
Google Scholar
[7]
Anderson, D. D. and Naseer, M., Beck's coloring of a commutative ring.
J. Algebra
159(1993), 500–514. http://dx.doi.Org/10.1006/jabr.1993.1171
Google Scholar
[8]
Anderson, D. D. and Mulay, S. B., On the diameter and girth of a zero-divisor graph.
J. Pure Appl. Algebra
210(2007), 543–550. http://dx.doi.Org/10.1016/j.jpaa.2006.10.007
Google Scholar
[9]
Anderson, D. E. andLivingston, P. S., The zero-divisor graph of a commutative ring.
J. Algebra
217(1999), 434–447. http://dx.doi.Org/10.1006/jabr.1998.7840
Google Scholar
[10]
Atiyah, M. E. and Macdonald, I. G., Introduction to commutative algebra.
Addison-Wesley, 1969.Google Scholar
[11]
Beck, I., Coloring of commutative rings.
J. Algebra
116(1988), 208–226. http://dx.doi.Org/10.1016/0021-8693(88)90202-5
Google Scholar
[12]
Behboodi, M. and Rakeei, Z., The annihilating-ideal graph of commutative rings. I.
J. Algebra Appl.
10(2011), 727–739. http://dx.doi.Org/!0.1142/S0219498811004896
Google Scholar
[13]
Behboodi, M. and Rakeei, Z., The annihilating-ideal graph of commutative rings. II.
J. Algebra Appl.
10(2011), 741–753. http://dx.doi.Org/10.1142/S0219498811004902
Google Scholar
[14]
Chakrabarty, I., Ghosh, S.,Mukherjee, T. K., and Sen, M. K., Intersection graphs of ideals of rings.
Discrete. Math.
309(2009), 5381–5392. http://dx.doi.Org/10.1016/j.disc.2008.11.034
Google Scholar
[15]
Lu, D., Wu, T., Ye, M., and Yu, H., On graphs related to the co-maximal ideals of a commutative ring. ISRN Combinatorics Volume 2013, Article ID 354696, 7 pages.Google Scholar
[16]
Lucas, T. G., The diameter of a zero divisor graph.
J. Algebra
301(2006), 174–193. http://dx.doi.Org/10.101 6/j.jalgebra.2006.01.01 9
Google Scholar
[17]
Lam, T.Y., A first course in non-commutative rings.
Springer-Verlag, New York, 1991.Google Scholar
[18]
Matlis, E., The minimal prime spectrum of a reduced ring.
Illinois J. Math.
27(1983), 353–391.Google Scholar
[19]
Samei, K., On the comaximal graph of a commutative ring.
Canad. Math. Bull.
57(2014), 413–423. http://dx.doi.Org/10.4153/CMB-2013-033-7.Google Scholar
[20]
West, D. B., Introduction to graph theory. Second edition. Prentice Hall, USA, 2001.Google Scholar
You have
Access
- 14
- Cited by