No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
In this paper we show that the Lie-group $\text{Pi}{{\text{n}}_{4}}$ is isomorphic to the semidirect product $\text{(S}{{\text{U}}_{2}}\times \text{S}{{\text{U}}_{2}})\text{Z/2}$ where $Z/2$ operates by flipping the factors. Using this structure theorem we prove a classification theorem for $\text{Pi}{{\text{n}}_{4}}$-bundles over a finite 4-complex $X$.