Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T18:15:31.220Z Has data issue: false hasContentIssue false

A Characterization of the Quadratic Irrationals

Published online by Cambridge University Press:  20 November 2018

Tom C. Brown*
Affiliation:
Department of Mathematics and Statistics Simon Fraser University Burnaby, BC V5A ISA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let α be a positive irrational real number, and let fα (n) = [(n + l)α] — [nα] — [α],n > 1, where [x] denotes the greatest integer not exceeding x. It is shown that the sequence fα has a certain 'substitution property' if and only if α is the root of a quadratic equation over the rationals.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1991

References

1. Bernoulli, J. III, Sur une nouvelle espèce de calcul, Recueil pour les astronomes, Vols. 1, 2, Berlin, 1772.Google Scholar
2. Berstel, J., Mots de Fibonacci, Séminaire d'Informatique Théorique, L. I. T. P. Université Paris VI et VII, Année 1980/81, 5758.Google Scholar
3. Fraenkel, A. S., Mushkin, M., and Tassa, U., Determination of[n9] by its sequence of differences, Canad. Math. Bull. 21 (1978), 441446.Google Scholar
4. Karhumaki, J., On cube-free w -words generated by binary morphisms, Discrete Appl. Math. 5(1983), 279 297.Google Scholar
5. Markoff, A. A., Sur une question de Jean Bernoulli, Math. Ann. 19 (1882), 2736.Google Scholar
6. Restivo, A., Permutation properties and the Fibonacci semigroup, Semigroup Forum 38 (1989), 337345.Google Scholar
7. Stolarsky, K. B., Beatty sequences, continued fractions, and certain shift operators, Canad. Math, Bull. 19 (1976), 473482.Google Scholar
8. Venkov, B. A., Elementary Number Theory, Translated and edited by Helen Alderson, Wolters-Noordhoff, Groningen, 1970,6568.Google Scholar