Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T04:58:28.322Z Has data issue: false hasContentIssue false

A Characterization of Projective Metric Spaces

Published online by Cambridge University Press:  20 November 2018

Rolfdieter Frank*
Affiliation:
Department of Mathematics University of Toronto Toronto, Ontario Canada M5A 1A1
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A projective metric space is a pappian projective space together with a quadric and a certain equivalence relation on the pairs of those points which do not belong to the quadric. This equivalence relation is defined by means of the corresponding quadratic form and satisfies a condition which is a projective version of Miquel's theorem. We characterize the projective metric spaces of dimension at least two over fields of order at least 13.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1986

References

1. F., Bachmann: Aufbau der Géométrie aus dem Spiegelungsbe griff (second edition). Berlin-Heidelberg-New York: Springer 1973.Google Scholar
2. Benz, W.: Vorlesungen iiber Géométrie der Algebren. Berlin-Heidelberg-New York: Springer 1973.Google Scholar
3. Dembowski, P.: Semiaffine Ebenen. Arch. Math. 13, 120131 (1962).Google Scholar
4. Frank, R.: Gruppentheoretische Kennzeichnung der Geometrien metrischer Vektorräume. Geom. Ded. 16, 1984, 157165.Google Scholar
5. Frank, R.: Zur gruppentheoretischen Darstellung der projektiv-metrischen Geometrien. J. of Geom. 22, 158166(1984).Google Scholar
6. Lingenberg, R.: Metric Planes and Metric Vector Spaces. New York: Wiley Interscience 1979.Google Scholar
7. Schroder, E. M.: Eine gruppentheoretisch-geometrische Kennzeichnung der projektiv-metrischen Geometrien. J. of Geom. 18, 5769 (1982).Google Scholar
8. Schroder, E. M.: On Foundations of Metric Geometries. Rendiconti del Seminario Matematico di Brescia 7, 583601 (1984).Google Scholar