Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T16:08:56.587Z Has data issue: false hasContentIssue false

Cauchy’s Problem for Harmonic Functions with Entire Data on a Sphere

Published online by Cambridge University Press:  20 November 2018

Dmitry Khavinson*
Affiliation:
Department of Mathematics University of Arkansas Fayetteville, Arkansas 72701 U.S.A., email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give an elementary potential-theoretic proof of a theorem of G. Johnsson: all solutions of Cauchy’s problems for the Laplace equations with an entire data on a sphere extend harmonically to the whole space RN except, perhaps, for the center of the sphere.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

[ABR] Axler, S., Bourdon, P. and Ramey, W., Harmonic Function Theory, Springer-Verlag, 1992.Google Scholar
[BS] Bony, J. M. and Schapira, P., Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math. 17 (1972), 95105.Google Scholar
[J] Johnsson, G., The Cauchy problem in Cn for linear second order partial differential equations with data on a quadric surface, Trans.Amer.Math. Soc. 344 (1994), 148.Google Scholar
[KS1] Khavinson, D. and Shapiro, H. S., The Schwarz potential in Rn and Cauchy's problem for the Laplace equation, Research Report TRITA-MAT-1989-36, Royal Institute of Technology, Stockholm, 1989.Google Scholar
[KS2] Khavinson, D. and Shapiro, H. S., Dirichlet's problem when the data is an entire function, Bull. London Math. Soc. 24 (1992), 456468.Google Scholar
[L] Leray, J., Uniformisation de la solution des problème linéaire analytique de Cauchy, prés de la variété qui porte les données de Cauchy, Bull. Soc. Math. France 85 (1957), 389429.Google Scholar
[S] Schaeffer, A. D., Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc. 47 (1941), 565579.Google Scholar
[SS] Sternin, B. Yu. and Shatalov, V. E., Differential Equations on Complex Manifolds, Kluwer, 1994.Google Scholar
[Z] Zerner, M., Domains d’holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sci. Paris, Sér. I Math. 272 (1971), 16461648.Google Scholar